Python批量计算多张遥感影像的NDVI

  本文介绍基于Python中的gdal模块,批量基于大量多波段遥感影像文件,计算其每1景图像各自的NDVI数值,并将多景结果依次保存为栅格文件的方法。

  如下图所示,现在有大量.tif格式的遥感影像文件,其中均含有红光波段近红外波段(此外也可以含有其他光谱波段,有没有都不影响);我们希望,批量计算其每1景遥感影像的NDVI

  在之前的文章中,我们多次介绍过在不同软件或平台中计算NDVI的方法,大家可以参考文章ArcGIS中ArcMap快速自动计算单一波段或多波段栅格遥感影像NDVI的方法(https://blog.csdn.net/zhebushibiaoshifu/article/details/127290179),或者文章Google Earth Engine谷歌地球引擎GEE栅格代数与NDVI波段计算手动求取(https://blog.csdn.net/zhebushibiaoshifu/article/details/119145230)。而在本文中,我们就介绍一下基于Python中的gdal模块,实现NDVI批量计算的方法。

  这里所需的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 18 12:37:22 2024

@author: fkxxgis
"""

import os
from osgeo import gdal

original_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\Rec"
output_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Small\NDVI"

for filename in os.listdir(original_folder):
    if filename.endswith('.tif'):
        dataset = gdal.Open(os.path.join(original_folder, filename), gdal.GA_ReadOnly)
        width = dataset.RasterXSize
        height = dataset.RasterYSize
        
        driver = gdal.GetDriverByName('GTiff')
        output_dataset = driver.Create(os.path.join(output_folder, "NDVI_" + filename), width, height, 1, gdal.GDT_Float32)
        
        band_red = dataset.GetRasterBand(3)
        data_red = band_red.ReadAsArray()
        band_nir = dataset.GetRasterBand(4)
        data_nir = band_nir.ReadAsArray()
        data_ndvi = (data_nir - data_red) / (data_nir + data_red)

        output_band = output_dataset.GetRasterBand(1)
        output_band.WriteArray(data_ndvi)
        output_band.FlushCache()
        output_dataset.SetGeoTransform(dataset.GetGeoTransform())
        output_dataset.SetProjection(dataset.GetProjection())

        dataset = None
        output_dataset = None
        print(filename, "finished!")

  代码整体也非常简单。首先,我们定义输入文件与输入结果文件的路径,前者就是待计算NDVI的遥感影像文件路径,后者则是NDVI结果的遥感影像文件路径。

  接下来,遍历original_folder文件夹中的文件。其中,os.listdir()用于获取文件夹中的文件列表,其后的endswith('.tif')用于筛选出以.tif扩展名结尾的文件。

  随后,对于每个以.tif结尾的文件,首先使用gdal.Open()打开文件——其中的os.path.join()用于构建完整的文件路径;接下来获取影像数据集的宽度和高度,并使用gdal.GetDriverByName()获取GTiff驱动程序,用于创建输出影像文件;同时,使用driver.Create()创建一个与原始影像具有相同大小的输出影像文件。

  紧接着,从数据集中获取红光近红外波段的数据。dataset.GetRasterBand()用以获取指定的栅格波段,而band.ReadAsArray()则将波段数据读取为数组。

  其次,即可计算NDVI。使用获取的红光近红外波段数据计算NDVI,并将NDVI数据保存在data_ndvi数组中。

  最后,将NDVI数据写入输出影像文件。output_dataset.GetRasterBand()获取输出影像文件的波段,band.WriteArray()将数据写入波段,band.FlushCache()刷新波段缓存。

  此外,记得通过output_dataset.SetGeoTransform()output_dataset.SetProjection()设置输出影像文件的地理变换和投影信息。

  同时,需要清理和关闭数据集,将数据集和输出数据集设置为None以释放资源。还可以打印文件名finished!,表示当前文件处理完成。

  执行上述代码,我们即可在结果文件夹中看到计算得到的NDVI数据;如下图所示。

  至此,大功告成。

欢迎关注:疯狂学习GIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/599782.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python实验三 实现UDP协议、TCP协议进行服务器端与客户端的交互

实验三 实验题目 1、请利用生成器构造一下求阶乘的函数Factorial(),定义一个函数m(),在m()中调用生成器Factorial()生成小于100的阶乘序列存入集合s中,输出s。 【代码】 def factorial():n1f1while 1:​ f * n​ yield (f)​ n1…

做安卓应用开发的我,转前端开发了

距离转前端开发已经快3个月了,现在自己也慢慢的熟悉了开发。 在2月份的时候。领导找我们移动小组的谈话,主要是关于转前端或者后端的问题。由于公司移动端的选型,对安卓原生的需求降低,问下我们转其他开发的需求。 我毫不犹豫的选…

一文了解栈

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、栈是什么?二、栈的实现思路1.顺序表实现2.单链表实现3.双向链表实现 三、接口函数的实现1.栈的定义2.栈的初始化3.栈的销毁4.入栈5.出栈6.返回栈…

MFC列表控件用ADO添加数据实例

1、本程序基于前期我的博客文章《MFC用ADO连接ACESS数据库实例(免费源码下载)》 程序功能通过编辑框、组合框实时将数据写入ACESS数据库并在列表控件上显示。 2、在主界面资源视图上加上一个按钮控件、两个静态文本、一个编辑框IDC_EDIT1变量名name、一个组合框IDC_COMBO1变量名…

【从零开始学习Minio | 第一篇】快速介绍什么是Minio

前言: 在当今数字化时代,数据的存储和管理已经成为了企业发展中的关键一环。随着数据量的不断增长和数据安全性的日益受到重视,传统的数据存储解决方案往往面临着诸多挑战。为了应对这些挑战,云存储技术应运而生,并在…

VMware下Ubuntu的安装教程

文章目录 一、Ubuntu如何下载1.下载官方地址https://ubuntu.com/2.点选Ubuntu服务器版本3.点击下载Ubuntu服务器版本iso镜像二、VMware安装Ubuntu服务器系统1.创建虚拟机2.选择下载好的Ubuntu服务器镜像3.创建安装完成三、Ubuntu Server如何设置1.Ubuntu Server没有中文所以全都…

Skywalking数据持久化与自定义链路追踪

学习本篇文章之前首先要了解一下Sky walking的基础知识 分布式链路追踪工具Skywalking详解 一,Sky walking数据持久化 Sky walking提供了es,MySQL等数据持久化方案,默认使用h2基于内存的数据库,重启之后数据即会丢失。 在实际工…

asp.net成绩查询系统

说明文档 运行前附加数据库.mdf(或sql生成数据库) 主要技术: 基于asp.net架构和sql server数据库 功能模块: asp.net成绩查询系统 学生功能有查看成绩和修改账号密码等 后台管理员可以进行用户管理 管理员添加管理员查询注…

element-plus el-time-picker 时间段选择(可多选)

实现一个如图的时间段选择器 处理好时间回显逻辑&#xff0c;组件内[‘’,‘’],后端数据[{startTime:‘’,endTime:‘’}]处理好加和减的显示逻辑 <template><div><div v-for"(item, index) in currentChoose" :key"index" class"fl…

[Java EE] 多线程(九):ReentrantLock,Semaphore,CountDownLatch与线程安全的集合类(多线程完结)

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (91平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

C++之类与对象

1、类声明 2、共有、私有、保护成员。&#xff08;就比如说你一个变量是private的&#xff0c;然后在main函数中&#xff0c;就调用不了&#xff0c;只能在这个类.cpp中调用&#xff09; 3、数据抽象和封装 4、内联函数 内存体积会增大&#xff0c;以空间换时间&#xff1a;编…

php使用服务器端和客户端加密狗环境部署及使用记录(服务器端windows环境下部署、linux环境宝塔面板部署、客户端部署加密狗)

php使用服务器端和客户端加密狗环境部署及使用记录 ViKey加密狗环境部署1.windows环境下部署开发文档验证代码提示Fatal error: Class COM not found in 2.linux环境下部署&#xff08;宝塔面板&#xff09;开发文档验证代码提示Fatal error: Uncaught Error: Call to undefine…

【软测学习笔记】Python入门Day02

&#x1f31f;博主主页&#xff1a;我是一只海绵派大星 &#x1f4da;专栏分类&#xff1a;软件测试笔记 &#x1f4da;参考教程&#xff1a;黑马教程❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ python安装 1、进入Python的官方下载页面&#xff1a; Download Python | Py…

Java+SpringBoot+JSP实现在线心理评测与咨询系统

前言介绍 随着互联网技术的高速发展&#xff0c;人们生活的各方面都受到互联网技术的影响。现在人们可以通过互联网技术就能实现不出家门就可以通过网络进行系统管理&#xff0c;交易等&#xff0c;而且过程简单、快捷。同样的&#xff0c;在人们的工作生活中&#xff0c;也就…

用PowerPoint创建毛笔字书写动画

先看看下面这个毛笔字书写动画&#xff1a; 这个动画是用PowerPoint创建的。下面介绍创建过程。 1、在任何一款矢量图片编辑软件中创建一个图片&#xff0c;用文字工具输入文字内容。我用的是InkScape。排好版后将图片保存为.svg格式的矢量图片文件。 2、打开PowerPoint&…

RTT潘多拉开发板上实现电源管理

简介 随着物联网(IoT)的兴起&#xff0c;产品对功耗的需求越来越强烈。作为数据采集的传感器节点通常需要在电池供电时长期工作&#xff0c;而作为联网的SOC也需要有快速的响应功能和较低的功耗。 在产品开发的起始阶段&#xff0c;首先考虑是尽快完成产品的功能开发。在产品…

C++变量的作用域与存储类型

一 变量的作用域和存储类型 1 变量的作用域(Scope) 指在源程序中定义变量的位置及其能被读写访问的范围分为局部变量(Local Variable)和全局变量(Global Variable) 1&#xff09;局部变量(Local Variable) 在语句块内定义的变量 形参也是局部变量 特点&#xff1a; 生存期是…

web 基础之 HTTP 请求

web 基础 网上冲浪 就是在互联网(internet)上获取各种信息&#xff0c;进行工作&#xff0c;或者娱乐&#xff0c;他的英文表示surfing the Internet&#xff0c;因 “surfing”d的意思是冲浪&#xff0c;即成为网上冲浪&#xff0c;这是一种形象说法&#xff0c; 也是一个非…

交易复盘-20240507

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 蔚蓝生物 (5)|[9:25]|[36187万]|4.86 百合花…

SpringBootWeb入门

SpringBoot可以帮助我们快速的构建应用程序、简化开发、提高效率 创建SpringBoot工程&#xff0c;并勾选web开发相关依赖 定义HelloController类&#xff0c;添加方法&#xff0c;并添加注解 运行测试 创建SpringBoot工程(联网下载) 在File里面点击new Module 点击next 修…