【100天精通python】Day23:正则表达式,基本语法与re模块详解示例

 目录

 专栏导读 

1 正则表达式概述

2 正则表达式语法

2.1 正则表达式语法元素

 2.2 正则表达式的分组操作

 3 re 模块详解与示例

4 正则表达式修饰符


专栏导读 

专栏订阅地址:https://blog.csdn.net/qq_35831906/category_12375510.html


1 正则表达式概述

        python 的正则表达式是什么,有哪些内容,有什么功能,怎么用?

        Python的正则表达式是一种用于处理字符串的强大工具,由re模块提供支持。正则表达式允许你根据特定模式来匹配、搜索、替换和提取文本数据。

正则表达式的基本组成包括:

  1. 字面字符:普通的字符,例如'a'、'b'等,它们直接匹配相应的字符。
  2. 元字符:具有特殊含义的字符,例如'.'匹配任意字符、'\d'匹配数字等。
  3. 限定符:用于指定模式的匹配次数,例如'*'匹配0次或多次、'+'匹配1次或多次等。
  4. 字符类:用于匹配一组字符中的任意一个字符,例如'[abc]'匹配'a'、'b'或'c'。
  5. 排除字符:在字符类中使用'^'来排除指定的字符。
  6. 转义字符:用于匹配特殊字符本身,例如使用'.'匹配实际的点号。

正则表达式在文本处理中有很多功能:

  • 模式匹配:查找字符串中是否包含特定的模式。
  • 文本搜索:在字符串中搜索匹配模式的第一个出现。
  • 查找所有:查找字符串中所有匹配模式的出现,并返回所有匹配结果的列表。
  • 分割:根据模式将字符串分割成多个部分。
  • 替换:将匹配模式的部分替换为指定的字符串。

以下是一个简单的使用正则表达式的示例:

import re

pattern = r'\d+'  # 匹配一个或多个数字
text = "There are 123 apples and 456 oranges."

# 搜索
search_result = re.search(pattern, text)
if search_result:
    print("Found:", search_result.group())

# 查找所有
findall_result = re.findall(pattern, text)
print(findall_result)  # Output: ['123', '456']

        上述代码中,re.search()函数搜索第一个匹配的数字,而re.findall()函数查找字符串中所有匹配的数字。

        使用正则表达式时,应当确保模式能够正确匹配目标文本,同时注意处理可能出现的异常情况。熟练掌握正则表达式,可以在文本处理中实现高效和灵活的匹配、搜索和替换操作

2 正则表达式语法

2.1 正则表达式语法元素

    行定位符、元字符、限定符、字符类、排除字符、选择字符和转义字符是正则表达式的基本组成部分,它们用于描述和匹配字符串的模式。

  1. 行定位符:

    • "^":匹配字符串的开头。
    • "$":匹配字符串的结尾。
  2. 元字符:

    • ".":匹配任意字符(除了换行符)。
    • "\d":匹配任意数字字符,等同于[0-9]
    • "\D":匹配任意非数字字符,等同于[^0-9]
    • "\w":匹配任意字母、数字或下划线字符,等同于[a-zA-Z0-9_]
    • "\W":匹配任意非字母、数字或下划线字符,等同于[^a-zA-Z0-9_]
    • "\s":匹配任意空白字符,包括空格、制表符、换行符等。
    • "\S":匹配任意非空白字符。
  3. 限定符:

    • "*":匹配前一个字符零次或多次。
    • "+":匹配前一个字符一次或多次。
    • "?":匹配前一个字符零次或一次。
    • "{n}":匹配前一个字符恰好n次。
    • "{n,}":匹配前一个字符至少n次。
    • "{n, m}":匹配前一个字符至少n次,但不超过m次。
  4. 字符类:

    • "[...]":匹配方括号内的任意一个字符。
    • "[^...]":匹配除方括号内的字符之外的任意一个字符。
  5. 排除字符:

    • "^":在字符类内使用,表示排除指定字符。
  6. 选择字符:

    • "|":逻辑或,匹配两个模式之一。
  7. 转义字符:

    • "\":用于转义特殊字符,使其失去特殊含义,例如\.匹配实际的点号

        这些元字符和特殊符号组合形成了正则表达式的模式,使得正则表达式可以描述非常复杂的字符串匹配规则。要使用正则表达式,你可以使用Python的re模块提供的函数进行匹配、搜索、替换等操作。熟悉这些基本元素有助于编写更加强大和灵活的正则表达式。

 示例:

import re

# 行定位符
pattern1 = r'^Hello'  # 匹配以"Hello"开头的字符串
print(re.match(pattern1, "Hello, World!"))  # Output: <re.Match object; span=(0, 5), match='Hello'>

pattern2 = r'World$'  # 匹配以"World"结尾的字符串
print(re.search(pattern2, "Hello, World!"))  # Output: <re.Match object; span=(7, 12), match='World'>

# 元字符
pattern3 = r'a.c'  # 匹配"a"、任意字符、"c"
print(re.search(pattern3, "abc"))  # Output: <re.Match object; span=(0, 3), match='abc'>
print(re.search(pattern3, "adc"))  # Output: <re.Match object; span=(0, 3), match='adc'>
print(re.search(pattern3, "a,c"))  # Output: <re.Match object; span=(0, 3), match='a,c'>

pattern4 = r'ab*'  # 匹配"a"、"b"出现0次或多次
print(re.search(pattern4, "abbb"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern4, "ac"))  # Output: <re.Match object; span=(0, 0), match=''>

pattern5 = r'ab+'  # 匹配"a"、"b"出现1次或多次
print(re.search(pattern5, "abbb"))  # Output: <re.Match object; span=(0, 4), match='abbb'>
print(re.search(pattern5, "ac"))  # Output: None

pattern6 = r'ab?'  # 匹配"a"、"b"出现0次或1次
print(re.search(pattern6, "abbb"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern6, "ac"))  # Output: <re.Match object; span=(0, 0), match=''>

# 限定符
pattern7 = r'a{3}'  # 匹配"a"出现3次
print(re.search(pattern7, "aaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern7, "aaaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern7, "aa"))  # Output: None

pattern8 = r'a{3,5}'  # 匹配"a"出现3次到5次
print(re.search(pattern8, "aaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern8, "aaaaa"))  # Output: <re.Match object; span=(0, 5), match='aaaaa'>
print(re.search(pattern8, "aaaaaa"))  # Output: <re.Match object; span=(0, 5), match='aaaaa'>

# 字符类和排除字符
pattern9 = r'[aeiou]'  # 匹配任意一个小写元音字母
print(re.search(pattern9, "apple"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern9, "banana"))  # Output: <re.Match object; span=(1, 2), match='a'>
print(re.search(pattern9, "xyz"))  # Output: None

pattern10 = r'[^0-9]'  # 匹配任意一个非数字字符
print(re.search(pattern10, "hello"))  # Output: <re.Match object; span=(0, 1), match='h'>
print(re.search(pattern10, "123"))  # Output: None

# 转义字符
pattern11 = r'\.'  # 匹配句号
print(re.search(pattern11, "www.example.com"))  # Output: <re.Match object; span=(3, 4), match='.'>

# 分组
pattern12 = r'(ab)+'  # 匹配"ab"出现1次或多次作为一个整体
print(re.search(pattern12, "ababab"))  # Output: <re.Match object; span=(0, 6), match='ababab'>

输出结果显示了匹配的子字符串的起始位置和结束位置,以及匹配的实际字符串内容。

常用元字符

常用限定符  

 2.2 正则表达式的分组操作

        在正则表达式中,分组是一种将多个子模式组合在一起并对其进行单独处理的机制。通过使用括号()来创建分组,可以实现更复杂的匹配和提取操作。

分组的作用包括:

  1. 优先级控制:可以使用分组来改变子模式的优先级,确保正确的匹配顺序。

  2. 子模式重用:可以对某个子模式进行命名,并在后续的正则表达式中引用这个名称,实现对同一模式的重用。

  3. 子模式提取:可以通过分组来提取匹配的子串,方便对其中的内容进行进一步处理。

示例:

import re

text = "John has 3 cats and Mary has 2 dogs."

# 使用分组提取匹配的数字和动物名称
pattern = r'(\d+)\s+(\w+)'  # 使用括号创建两个分组:一个用于匹配数字,另一个用于匹配动物名称
matches = re.findall(pattern, text)  # 查找所有匹配的结果并返回一个列表

for match in matches:
    count, animal = match  # 将匹配结果拆分为两个部分:数字和动物名称
    print(f"{count} {animal}")

# 使用命名分组
pattern_with_name = r'(?P<Count>\d+)\s+(?P<Animal>\w+)'  # 使用命名分组,给子模式指定名称Count和Animal
matches_with_name = re.findall(pattern_with_name, text)  # 查找所有匹配的结果并返回一个列表

for match in matches_with_name:
    count = match['Count']  # 通过名称获取匹配结果中的数字部分
    animal = match['Animal']  # 通过名称获取匹配结果中的动物名称部分
    print(f"{count} {animal}")

 以上代码演示了如何使用分组提取正则表达式中匹配的子串。第一个正则表达式使用了普通分组,通过括号将数字和动物名称分别提取出来。第二个正则表达式使用了命名分组,通过(?P<Name>...)的语法形式给子模式指定了名称,从而在匹配结果中可以通过名称获取对应的子串。这样可以使代码更具可读性,方便后续对匹配结果的处理和使用。

上述代码报错如下

"TypeError: tuple indices must be integers or slices, not str" 这个错误意味着在代码中尝试使用字符串作为元组的索引,但元组的索引只能是整数或切片。

当使用元组的时候,需要用整数或切片来获取元组中的元素,如:my_tuple[0]my_tuple[1:3],这些是合法的索引方式。但如果你尝试使用字符串来索引元组中的元素,比如:my_tuple['key'],这就是不合法的,因为元组并没有与字符串索引相关联的键值对。

更正:用 re.finditer()替代第二个 re.findall(),用match.group()获取匹配结果中的内容。

更正后代码:

import re

text = "John has 3 cats and Mary has 2 dogs."

# 使用分组提取匹配的数字和动物名称
pattern = r'(\d+)\s+(\w+)'  # 使用括号创建两个分组:一个用于匹配数字,另一个用于匹配动物名称
matches = re.findall(pattern, text)  # 查找所有匹配的结果并返回一个列表

for match in matches:
    count, animal = match  # 将匹配结果拆分为两个部分:数字和动物名称
    print(f"{count} {animal}")

# 使用命名分组
pattern_with_name = r'(?P<Count>\d+)\s+(?P<Animal>\w+)'  # 使用命名分组,给子模式指定名称Count和Animal
matches_with_name = re.finditer(pattern_with_name, text)  # 使用re.finditer()查找所有匹配的结果

for match in matches_with_name:
    count = match.group('Count')  # 通过名称获取匹配结果中的数字部分
    animal = match.group('Animal')  # 通过名称获取匹配结果中的动物名称部分
    print(f"{count} {animal}")


注: 

 

re.findall()re.finditer()都是Python中用于正则表达式匹配的函数,它们的区别在于返回的结果类型不同。

  1. re.findall(pattern, string): findall函数会返回所有与正则表达式pattern匹配的结果,并将它们以列表的形式返回。每个匹配结果将作为一个字符串元素存储在列表中。如果正则表达式中有分组,findall只会返回分组中的内容而不返回完整的匹配结果。

  2. re.finditer(pattern, string): finditer函数也会返回所有与正则表达式pattern匹配的结果,但不同于findallfinditer返回的是一个迭代器。每个迭代器对象代表一个匹配结果,可以通过迭代器的group()方法来获取匹配结果中的内容。如果正则表达式中有分组,可以使用group()方法来访问各个分组的内容。

总结起来,re.findall()返回一个列表,而re.finditer()返回一个迭代器。如果需要处理多个匹配结果,使用finditer更加灵活和高效,因为它不会一次性返回所有匹配结果,而是在需要时按需提供。

 

3 re 模块详解与示例

   re模块是Python中用于处理正则表达式的内置模块,提供了一系列函数来进行字符串匹配、搜索、替换和分割等操作。以下是re模块的主要函数:

  1. re.compile(pattern, flags=0): 编译正则表达式模式,返回一个正则表达式对象。如果要多次使用相同的正则表达式,可以使用这个函数预编译,提高性能。

  2. re.match(pattern, string, flags=0): 尝试从字符串的开头开始匹配模式,如果匹配成功,则返回匹配对象;否则返回None。

  3. re.search(pattern, string, flags=0): 在整个字符串中搜索匹配模式的第一个出现,如果匹配成功,则返回匹配对象;否则返回None。

  4. re.findall(pattern, string, flags=0): 查找字符串中所有匹配模式的出现,返回所有匹配结果的列表。

  5. re.finditer(pattern, string, flags=0): 查找字符串中所有匹配模式的出现,返回一个迭代器,可以通过迭代器获取匹配对象。

  6. re.split(pattern, string, maxsplit=0, flags=0): 根据模式将字符串分割成多个部分,并返回一个列表。

  7. re.sub(pattern, replacement, string, count=0, flags=0): 将匹配模式的部分替换为指定的字符串,并返回替换后的字符串。

在上述函数中,pattern是正则表达式的模式,string是要进行匹配或处理的字符串,flags是可选参数,用于指定正则表达式的修饰符。其中,flags参数可以使用多个修饰符进行组合,例如使用re.IGNORECASE | re.MULTILINE来指定忽略大小写和多行匹配。

以下示例展示了re模块中各种函数的使用,并涵盖了匹配、搜索、替换、分割、命名分组等功能:

import re

text = "John has 3 cats, Mary has 2 dogs."

# 使用re.search()搜索匹配模式的第一个出现
pattern_search = r'\d+\s+\w+'
search_result = re.search(pattern_search, text)
if search_result:
    print("Search result:", search_result.group())  # Output: "3 cats"

# 使用re.findall()查找所有匹配模式的出现,并返回一个列表
pattern_findall = r'\d+'
findall_result = re.findall(pattern_findall, text)
print("Find all result:", findall_result)  # Output: ['3', '2']

# 使用re.sub()将匹配模式的部分替换为指定的字符串
pattern_sub = r'\d+'
replacement = "X"
sub_result = re.sub(pattern_sub, replacement, text)
print("Sub result:", sub_result)  # Output: "John has X cats, Mary has X dogs."

# 使用re.split()根据模式将字符串分割成多个部分
pattern_split = r'\s*,\s*'  # 匹配逗号并去除前后空格
split_result = re.split(pattern_split, text)
print("Split result:", split_result)  # Output: ['John has 3 cats', 'Mary has 2 dogs.']

# 使用命名分组
pattern_named_group = r'(?P<Name>\w+)\s+has\s+(?P<Count>\d+)\s+(?P<Animal>\w+)'
matches_with_name = re.finditer(pattern_named_group, text)
for match in matches_with_name:
    name = match.group('Name')
    count = match.group('Count')
    animal = match.group('Animal')
    print(f"{name} has {count} {animal}")

# 使用re.compile()预编译正则表达式
pattern_compile = re.compile(r'\d+')
matches_compiled = pattern_compile.findall(text)
print("Compiled findall result:", matches_compiled)  # Output: ['3', '2']

 上述示例展示了使用re模块进行正则表达式的匹配、搜索、替换、分割和命名分组的功能。注释说明了每个步骤的作用和预期输出,通过合理使用正则表达式,可以快速实现对字符串的复杂处理需求。

4 正则表达式修饰符

        在Python的正则表达式中,修饰符(也称为标志或模式标志)是一些可选参数,它们可以在编译正则表达式时传递给re.compile()函数或直接在正则表达式字符串中使用,用于改变匹配的行为。

        以下是常用的正则表达式修饰符:

  1. re.IGNORECASEre.I: 忽略大小写匹配。使用该修饰符后,可以在匹配时忽略大小写的差异。

  2. re.MULTILINEre.M: 多行匹配。使用该修饰符后,^$分别匹配字符串的开头和结尾,还可以匹配字符串中每一行的开头和结尾(每行以换行符分隔)。

  3. re.DOTALLre.S: 单行匹配。使用该修饰符后,.将匹配包括换行符在内的任意字符。

  4. re.ASCIIre.A: 使非ASCII字符只匹配其对应的ASCII字符。例如,\w将只匹配ASCII字母、数字和下划线,而不匹配非ASCII字符。

  5. re.UNICODEre.U: 使用Unicode匹配。在Python 3中,默认情况下正则表达式使用Unicode匹配。

  6. re.VERBOSEre.X: 使用“可读性更好”的正则表达式。可以在表达式中添加注释和空格,这样可以使正则表达式更易读。

在Python中,正则表达式修饰符(也称为标志)是可选的参数,用于调整正则表达式的匹配行为。修饰符可以在正则表达式模式的末尾添加,以影响模式的匹配方式。以下是常用的正则表达式修饰符:

下面通过示例来演示这些修饰符的用法:

import re

# 不区分大小写匹配
pattern1 = r'apple'
text1 = "Apple is a fruit."
match1 = re.search(pattern1, text1, re.I)
print(match1.group())  # Output: "Apple"

# 多行匹配
pattern2 = r'^fruit'
text2 = "Fruit is sweet.\nFruit is healthy."
match2 = re.search(pattern2, text2, re.M)
print(match2.group())  # Output: "Fruit"

# 点号匹配所有字符
pattern3 = r'apple.*orange'
text3 = "apple is a fruit.\noranges are fruits."
match3 = re.search(pattern3, text3, re.S)
print(match3.group())  # Output: "apple is a fruit.\noranges"

# 忽略空白和注释
pattern4 = r'''apple # This is a fruit
              \s+   # Match one or more whitespace characters
              is    # followed by "is"
              \s+   # Match one or more whitespace characters
              a     # followed by "a"
              \s+   # Match one or more whitespace characters
              fruit # followed by "fruit"'''
text4 = "Apple is a fruit."
match4 = re.search(pattern4, text4, re.X)
print(match4.group())  # Output: "apple is a fruit"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59926.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

苹果电脑第三方应用程序卸载工具CleanMyMacX4.14

CleanMyMacX&#xff0c;这是一款可以帮助你快速识别并卸载电脑上的多个应用程序的第三方工具&#xff0c;省去了逐个卸载的繁琐步骤。 我们首先要到下载CleanMyMacX&#xff0c; CleanMyMac X全新版下载如下: https://wm.makeding.com/iclk/?zoneid49983 然后&#xff0c…

大数据Flink(五十五):Flink架构体系

文章目录 Flink架构体系 一、 Flink中的重要角色 二、Flink数据流编程模型 三、Libraries支持

从 TCP/IP 到 CCIP:Chainlink 与合约的互联网

未来已来。通过链上金融重塑资本市场预计将影响全球价值 8.67 万亿美元的资产的使用方式。 Chainlink 的跨链互操作性协议&#xff08;CCIP&#xff09;将会这一转型过程中发挥重要作用&#xff0c;这是区块链连接性和互操作性的突破&#xff0c;使得 DeFi 应用可以通过单一界…

前端实习day20

今天解决了不少bug&#xff0c;成就感满满&#xff0c;有几个问题困扰了我很久&#xff0c;我查阅了很多博客&#xff0c;终于找到解决思路&#xff0c;顺利解决&#xff0c;这里记录一下解决思路。 1、在通过this.$refs.layoutSide.style设置<a-layout-sider>的宽度时&…

Opencv-C++笔记 (14) : 霍夫变换(直线、圆)

文章目录 一、霍夫变换-直线1.1霍夫变换-直线 原理详解 二、霍夫圆检测 一、霍夫变换-直线 Hough Line Transform用来做直线检测 前提条件 – 边缘检测已经完成 1、平面空间&#xff08;x,y&#xff09;到极坐标空间转换&#xff1b; 2、对极坐标进行变换&#xff0c;转化为…

服务器时钟同步

服务器时钟同步 文章目录 服务器时钟同步背景windows时钟同步Linux机器上的时钟同步Centos时钟同步Ubuntu系统时钟同步 查看是否同步的命令 背景 运维&#xff0c;XXX服务器慢了2秒&#xff0c;导致XXX业务没有正常执行&#xff0c;请立即排查为啥会有时钟不同步的问题。 首先…

ubuntu22安装如何安装window软件(.exe)

ubuntu未提供相应程序安装包&#xff0c;如何使用的ubuntu22.04 安装window提供的exe程序呢&#xff1f; 这里我了解有两种方案&#xff1a; 使用模拟器进行window程序的运行&#xff0c;但是肯定会有相应的性能损耗如&#xff08;wine&#xff09;在linux上运行virtualbox或…

【数据分享】2013-2020年全国范围的逐日SO2栅格数据(免费获取)

空气质量数据是在我们日常研究中经常使用的数据&#xff01;之前我们分享了来自于Zendo平台的1km分辨率的PM2.5、PM10和10km分辨率的SO2栅格数据&#xff08;均可查看之前文章获悉详情&#xff09;&#xff1a; 2000-2021年全国1km分辨率的逐日PM2.5栅格数据2000-2021年全国1k…

2023年 Java 面试八股文(20w字)

目录 第一章-Java基础篇 1、你是怎样理解OOP面向对象 难度系数&#xff1a;⭐ 2、重载与重写区别 难度系数&#xff1a;⭐ 3、接口与抽象类的区别 难度系数&#xff1a;⭐ 4、深拷贝与浅拷贝的理解 难度系数&#xff1a;⭐ 5、sleep和wait区别 难度系数&a…

海外热门地区/国家常见主体证件示例

海外热门地区/国家常见主体证件示例&#xff08;本页面内容较多&#xff0c;你可以通过CtrlF搜索&#xff09; Overseas Popular Areas / Countries Examples of Common certificates &#xff08;This page has more content, you can search by CtrlF&#xff09; 中国香港…

url重定向

不安全的url跳转 不安全的url跳转问题可能发生在一切执行了url地址跳转的地方。 如果后端采用了前端传进来的(可能是用户传参,或者之前预埋在前端页面的url地址)参数作为了跳转的目的地,而又没有做判断的话 就可能发生"跳错对象"的问题。 url跳转比较直接的危害是…

Spring源码篇(九)自动配置扫描class的原理

文章目录 前言ClassLoader如何加载jar包里的class自动配置扫描class的原理spring中的加载方式源码总结 前言 spring是怎样通过ComponentScan&#xff0c;或者自动配置扫描到了依赖包里class的&#xff1f; ClassLoader 这里涉及到了class Loader的机制&#xff0c;有些复杂&…

广州银行信用卡中心:强化数字引擎安全,实现业务稳步增长

广州银行信用卡中心是全国城商行中仅有的两家信用卡专营机构之一&#xff0c;拥有从金融产品研发至销售及后期风险控制、客户服务完整业务链条&#xff0c;曾获“2016年度最佳创新信用卡银行”。 数字引擎驱动业务增长 安全左移降低开发风险 近年来&#xff0c;广州银行信用卡…

SpringCloud之微服务API网关Gateway介绍

文章目录 1 微服务API网关Gateway1.1 网关简介1.2 Spring Cloud Gateway介绍1.3 Gateway特性1.4 Gateway核心概念1.4.1 路由1.4.1.1 定义1.4.1.2 动态路由 1.4.2 断言1.4.2.1 默认断言1.4.2.2 自定义Predicate 1.4.3 过滤器1.4.3.1 默认过滤器1.4.3.2 自定义Filter&#xff08;…

【CI/CD】图解六种分支管理模型

图解六种分支管理模型 任何一家公司乃至于一个小组织&#xff0c;只要有写代码的地方&#xff0c;就有代码版本管理的主场&#xff0c;初入职场&#xff0c;总会遇到第一个拦路虎 git 管理流程&#xff0c;但是每一个企业似乎都有自己的 git 管理流程&#xff0c;倘若我们能掌握…

redis初级

Redis 课程内容 Redis入门Redis数据类型Redis常用命令在Java中操作RedisRedis持久化机制 1. Redis入门 1.1 Redis简介 Redis是一个基于内存的key-value结构数据库。Redis 是互联网技术领域使用最为广泛的存储中间件。 **官网&#xff1a;**https://redis.io **中文网&…

【IC设计】ICC workshop Lab1 数据准备基本流程 【脚本总结】

Task 1 Create a Milkyway library 先进入lab1_data_setup目录&#xff0c;打开icc_shell&#xff0c;创建项目 create_mw_lib -technology $tech_file -mw_reference_library "$mw_path/sc $mw_path/io $mw_path/ram16x128" -bus_naming_style {[%d]} -open $my_m…

C5.0决策树建立个人信用风险评估模型

通过构建自动化的信用评分模型&#xff0c;以在线方式进行即时的信贷审批能够为银行节约很多人工成本。本案例&#xff0c;我们将使用C5.0决策树算法建立一个简单的个人信用风险评估模型。 导入类库 读取数据 #创建编码所用的数据字典 col_dicts{} #要编码的属性集 cols [che…

conda install 和pip install有什么区别?

本篇为分享贴&#xff0c;截图部分选自知乎&#xff0c;部分选自csdn&#xff0c;文字内容是结合自己实践进行总结。 环境引用的包在哪&#xff1f; 首先&#xff0c;一条命令&#xff1a; python -m site 这条命令可以定位引用的包在哪里 &#xff0c;当然也可以自己设置默认…

k8s存储卷

目录 一、为什么要存储卷&#xff1f;二、emptyDir存储卷三、hostPath存储卷四、 nfs共享存储卷五、PVC 和 PV5.1 PV和PVC之间的相互作用遵循的生命周期5.2 PV 的状态5.3 一个PV从创建到销毁的具体流程 六、静态创建pv和pvc资源由pod运用过程6.1 在NFS主机上创建共享目录&#…