往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
Python轴承故障诊断 (一)短时傅里叶变换STFT
Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客
Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客
Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客
Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客
Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客
Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客
Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客
Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客
Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客
Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客
基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客
大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客
Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客
Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客
Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客
交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客
交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客
轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型-CSDN博客
Python轴承故障诊断入门教学-CSDN博客
Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客
Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客
Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客
轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客
Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客
独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客
注意:本模型 和 基于VMD+CNN-BiGRU-Attenion的故障分类 继续加入 轴承故障诊断—创新模型全家桶 中,之前购买的同学请及时更新下载
全网最低价,创新网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越, 精度高。创新度也有!!!高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!)
CNN-TCN-Attention模型:
输入数据维度为[32, 1, 1024], 先送入CNN网络进行1d的卷积池化提取空间特征,然后把卷积池化后的特征送入TCN层提取时序特征,最后通过自注意力进行多尺度特征融合,最终送入全连接层和softmax进行分类诊断。
前言
本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_load(hp)-CSDN博客
1 轴承数据加载与预处理
1.1 导入数据
参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:
train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据
上图是数据的读取形式以及预处理思路
1.2 数据预处理,制作数据集
2 基于Pytorch的CNN-TCN-Attention创新诊断模型
2.1 定义CNN-TCN-Attention分类网络模型
2.2 设置参数,训练模型
50个epoch,准确率将近98%,CNN-TCN-Attention网络分类效果显著,CNN-TCN-Attention模型能够充分提取轴承故障信号的多尺度特征,收敛速度快,性能特别优越,效果明显。
注意调整参数:
-
可以适当增加 TCN层数和每层维度数,微调学习率;
-
微调CNN层数和每层神经元个数,增加更多的 epoch (注意防止过拟合)
-
可以改变一维信号堆叠的形状(设置合适的长度和维度)
2.3 模型评估
准确率、精确率、召回率、F1 Score
故障十分类混淆矩阵:
代码、数据如下:
对数据集和代码感兴趣的,可以关注最后一行
# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#代码和数据集:https://mbd.pub/o/bread/ZZ2Wm5Zs