LLaMA 羊驼系大语言模型的前世今生

关于 LLaMA

LLaMA是由Meta AI发布的大语言系列模型,完整的名字是Large Language Model Meta AI,直译:大语言模型元AI。Llama这个单词本身是指美洲大羊驼,所以社区也将这个系列的模型昵称为羊驼系模型

Llama、Llama2 和 Llama3 是一系列由 Meta AI 开发的开源大型语言模型(LLMs)。

LLaMA

LLaMA是Meta AI公司于2023年2月发布的大型语言模型。作为该系列的初代模型,Llama 是一个纯粹的基座语言模型,设计目标是提供一个开放且高效的通用语言理解与生成平台。共有 7B13B33B65B(650 亿)四种版本。

关于训练集,其来源都是公开数据集,无任何定制数据集,保证了其工作与开源兼容和可复现。整个训练数据集在 token 化之后大约包含 1.4T 的 token。其中,LLaMA-65B 和 LLaMA-33B 是在 1.4万亿个 token 上训练的,而最小的模型 LLaMA-7B 是在 1万亿个 token 上训练的。

关于模型性能,LLaMA 的性能非常优异:具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿),而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。虽然其他强大的大语言模型通常只能通过有限的API访问,但Meta在非商业许可的情况下发布了LLaMA的模型权重,供研究人员参考和使用。

LLaMA2

2023年7月,Facebook母公司Meta推出了LLaMA2,在人工智能 (AI) 行业掀起波澜,LLaMA2是一种开源大语言模型 (LLM),旨在挑战大型科技竞争对手的限制性做法。Meta免费发布 LLaMA2背后的代码和数据,使世界各地的研究人员能够利用和改进该技术。 Meta的首席执行官马克·扎克伯格一直直言不讳地强调开源软件对于刺激创新的重要性。

Meta 训练并发布了三种模型大小的 Llama 2:70、130 和 700 亿个参数。模型架构与 Llama 1 模型基本保持不变,但用于训练基础模型的数据增加了 40%。随附的预印本还提到了一个具有 34B 参数的模型,该模型可能在未来满足安全目标后发布。

Llama 2 包括基础模型和针对对话进行微调的模型,称为 Llama 2 - 聊天。与 Llama 1 进一步不同的是,所有模型都附带权重,并且对于许多商业用例都是免费的。然而,由于一些剩余的限制,Llama开源的描述受到了开源倡议组织(以维护开源定义而闻名)的争议。

Llama2 是 Llama 系列的下一代版本,标志着对初代模型的重要升级。以下是一些关键特性:

  1. SOTA 性能:Llama2 被描述为新的 state-of-the-art(SOTA)开源大型语言模型,意味着在发布时其性能在相关基准测试或实际应用中处于业界领先水平。
  2. 商业许可证:Llama2 附带商业许可证,这表明虽然它是开源的,但使用它可能需要遵循特定的许可条款,可能是为了确保模型的合理使用并保护知识产权。
  3. 模型规模:Llama2 的最大模型版本拥有约 700 亿个参数,展示了其在模型复杂度和潜在能力上的提升。
  4. 训练数据:Llama2 的训练数据规模显著增加,使用的 token 数量翻倍至 2 万亿,这增强了模型对广泛语言现象的理解和生成能力。
  5. 模型结构:虽然具体架构细节未给出,但提到的 MHA(多头注意力机制)、MQA(多查询注意力)、GQA(全局查询注意力)等组件可能暗示着 Llama2 在 Transformer 解码器部分采用了创新的设计,以提高模型的信息捕获和推理能力。

LLaMA3

Llama3 是 Llama 系列的最新迭代,展现了显著的技术进步和战略意义:

  1. 发布与时间节点:Llama3 于2024年4月18日发布,距离 Llama2 的发布仅过去了9个月,表明Meta AI 在短时间内快速推进了技术研发。
  2. 模型规模与性能
    • 参数数量:Llama3 提供了不同规模的版本,包括最小的 80 亿参数版本和最大规划中的 4050 亿参数版本。即使最小版本与 Llama2 最大版本(700亿参数)的性能处于同一量级,显示出Llama3在模型效率上的提升。
    • 性能对比:Llama3 的性能被描述为直逼 GPT-4,这暗示其在某些任务上可能与 OpenAI 的旗舰模型相当甚至有所超越,体现了其在语言理解和生成领域的强大竞争力。
  3. 训练数据与效率
    • 数据规模:Llama3 基于超过 15 万亿个 token 的公开数据预训练,数据量是 Llama2 的七倍,反映了 Meta AI 对于大规模数据驱动模型性能提升的重视。
    • 训练效率:Llama3 的训练效率相较于 Llama2 提升了三倍,这可能得益于算法优化、硬件加速或分布式训练策略的进步,使得在相同时间内能够完成更多的训练迭代或处理更大规模的数据。
  4. 集成与应用
    • 虚拟助手:Llama3 将被整合到 Meta 的虚拟助手服务中,使其成为 Facebook、Instagram、WhatsApp、Messenger 等平台上免费使用的最先进 AI 应用程序之一,增强了这些社交平台的智能化交互体验。
    • 云服务支持:亚马逊云科技(Amazon Web Services, AWS)官方博客提供了在 SageMaker Studio 中使用 Llama3 的详细指南,说明该模型得到了主流云服务商的支持,便于开发者和研究人员便捷地部署和利用。

综上所述,Llama、Llama2 和 Llama3 代表了 Meta AI 在大型语言模型开发上的连续创新与进步。从Llama到Llama2,再到Llama3,这一系列模型不仅在模型规模、训练数据量和训练效率上不断突破,而且在架构设计、许可策略以及实际应用场景中均展现出显著的迭代与升级。Llama3作为最新版本,以其逼近 GPT-4 的性能、大规模数据驱动的学习以及高效训练流程,巩固了 Meta 在开源大模型领域的领先地位,并推动了人工智能在社交、商业和其他领域的广泛应用。


欢迎关注微信公众号:大数据AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/597390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

修改idea缓存的默认存储位置

打开idea.properties 找到 # idea.config.path${user.home}/.IntelliJIdea/config # idea.system.path${user.home}/.IntelliJIdea/system 将${user.home}替换成你要存储到的路径 再次打开idea时会弹出消息,点击ok即可。

电脑c盘太满了,如何清理 电脑杀毒软件哪个好用又干净免费 电脑预防病毒的软件 cleanmymacX有必要买吗 杀毒软件排行榜第一名

杀毒软件通常集成监控识别、病毒扫描和清除、自动升级、主动防御等功能,有的杀毒软件还带有数据恢复、防范黑客入侵、网络流量控制等功能,是计算机防御系统的重要组成部分。 那么,对于Mac电脑用户来说,哪款电脑杀毒软件更好呢&a…

虚幻引擎5 Gameplay框架(二)

Gameplay重要类及重要功能使用方法(一) 配置LOG类及PlayerController的网络机制 探索验证GamePlay重要函数、类的执行顺序与含义 我们定义自己的日志,专门建立一个存放自己日志的类,这个类继承自BlueprintFunctionLibrary 然后…

Prometheus 2: 一个专门评估其他语言模型的开源语言模型(续集)

普罗米修斯的续集来了。 专有的语言模型如 GPT-4 经常被用来评估来自各种语言模型的回应品质。然而,透明度、可控制性和可负担性等考虑强烈促使开发专门用于评估的开源语言模型。另一方面,现有的开源评估语言模型表现出关键的缺点:1) 它们给出的分数与人类给出的分数存在显著差…

[Android]四大组件简介

在 Android 开发中,“四大组件”(Four Major Components)是指构成 Android 应用程序的四种核心组件,它们通过各自的方式与系统交互,实现应用的多样功能。这些组件是:Activity、Service、Broadcast Receiver…

用 node 写一个命令行工具,全局安装可用

现在,不管是前端项目还是 node 项目,一般都会用 npm 做包管理工具,而 package.json 是其相关的配置信息。 对 node 项目而言,模块导出入口文件由 package.json 的 main 字段指定,而如果是要安装到命令行的工具&#x…

28 - 算术运算指令

---- 整理自B站UP主 踌躇月光 的视频 文章目录 1. ALU改进2. CPU 整体电路3. 程序4. 实验结果 1. ALU改进 此前的 ALU: 改进后的 ALU: 2. CPU 整体电路 3. 程序 # pin.pyMSR 1 MAR 2 MDR 3 RAM 4 IR 5 DST 6 SRC 7 A 8 B 9 C 10 D 11 DI 1…

在.NET架构的Winform项目中引入“异步编程”思想和技术

在.NET架构的Winform项目中引入“异步编程”思想和技术 一、异步编程引入(1)异步编程引入背景(2)异步编程程序控制流图(3)异步编程前置知识: 二、异步编程demo步骤1:步骤2&#xff1…

政安晨:【Keras机器学习示例演绎】(三十八)—— 从零开始的文本分类

目录 简介 设置 加载数据IMDB 电影评论情感分类 准备数据 数据矢量化的两种选择 建立模型 训练模型 在测试集上评估模型 制作端到端模型 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨…

在Linux上使用Selenium驱动Chrome浏览器无头模式

大家好,我们平时在做UI自动化测试的时候,经常会用到Chrome浏览器的无头模式(无界面模式),并且将测试代码部署到Linux系统中执行,或者平时我们写个爬虫爬取网站的数据也会使用到,接下来和大家分享…

软考中级-软件设计师(九)数据库技术基础 考点最精简

一、基本概念 1.1数据库与数据库系统 数据:是数据库中存储的基本对象,是描述事物的符号记录 数据库(DataBase,DB):是长期存储在计算机内、有组织、可共享的大量数据集合 数据库系统(DataBas…

python基础---面向对象相关知识

面向对象 可以把数据以及功能打包为一个整体 类: 名称属性(数据)方法 class Person:def __init__(self, name, age):self.age ageself.name namedef print_info:print(self.name, self.age)定义 #经典类 class Dog1:pass# 新式类 class Dog2(object):pass在python3里面这…

LeetCode-741. 摘樱桃【数组 动态规划 矩阵】

LeetCode-741. 摘樱桃【数组 动态规划 矩阵】 题目描述:解题思路一:动态规划,定推初遍举。解题思路二:倒序循环解题思路三:0 题目描述: 给你一个 n x n 的网格 grid ,代表一块樱桃地&#xff0…

VMware虚拟机中Linux系统奔溃,怎么办?

一大早启动虚拟机准备开始工作,却遭遇到Linux系统崩溃,屏幕上显示以下错误提示: 这段文本看起来是来自系统引导时的日志信息,提到了一些关于文件系统的问题和建议。根据这段信息,似乎 /dev/sda1 分区中的文件系统存在一…

红日靶场ATTCK 1通关攻略

环境 拓扑图 VM1 web服务器 win7(192.168.22.129,10.10.10.140) VM2 win2003(10.10.10.135) VM3 DC win2008(10.10.10.138) 环境搭建 win7: 设置内网两张网卡,开启…

SeetaFace6人脸检测C++代码实现Demo

SeetaFace6包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计,并且顺应实际应用需求,开放口罩检测以及口罩佩戴场景下的人脸识别模型。 官网地址:https://github.co…

dockerk8s常用知识点

1、什么是docker 容器化和虚拟化对比 ▪开源的应用容器引擎,基于 Go 语言开发 ▪容器是完全使用沙箱机制,容器开销极低 ▪Docker就是容器化技术的代名词 ▪Docker也具备一定虚拟化职能 docker三大核心: Docker Engine: 提供了一个可以用来运行和管…

代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

ROC曲线分析是用于评估一个因素预测能力的手段,是可以用于连续型变量分组的方法。在生存分析中,疾病状态和因素取值均会随时间发生变化。而标准的ROC曲线分析将个体的疾病状态和因素取值视作固定值,未将时间因素考虑在分析之中。在这种情况下…

edge使用心得

1. **性能提升**:基于Chromium的Edge浏览器在速度和响应方面有显著提升,特别是在处理复杂的网页结构和执行JavaScript代码时。这意味着无论是日常浏览还是运行Web应用程序,都能享受流畅的用户体验。 2. **更好的兼容性**:由于与G…

大模型最新消息

最新消息如下: 大语言模型服务的多样化:互联网上出现了许多免费的大语言模型服务,如OpenAI的ChatGPT、Google的Gemini、Anthropic的Claude、Meta的Llama等。这些服务的推出使得大语言模型的应用更加广泛和便捷。软银和苹果的AI新动向&#x…