本篇目标
- 泛型编程
- 函数模板
- 类模板
一、泛型编程
下面是实现一个通用的交换函数
void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
void Swap(double& left, double& right)
{
double temp = left;
left = right;
right = temp;
}
void Swap(char& left, char& right)
{
char temp = left;
left = right;
right = temp;
}
使用函数重载虽然可以实现,但是有一下几个不好的地方:
1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函 数
2. 代码的可维护性比较低,一个出错可能所有的重载均出错
那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件 (即生成具体类型的代码),那将会节省许多头发。
巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
二、函数模板
2.1 函数模板
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定 类型版本
2.2 函数模板格式
注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)
使用函数模板实现交换函数
template<typename T>//T为类型名,自己起名字
void Swap(T& left, T& right) {
T tmp = right;
right = left;
left = tmp;
}
int main() {
int a = 1,b = 2;
Swap(a, b);
cout << a << ' ' << b << endl;
double c = 1.1, d = 1.2;
Swap(c, d);
cout << c << ' ' << d << endl;
return 0;
}
2.3 原理
函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模 板就是将本来应该我们做的重复的事情交给了编译器
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。
2.4 函数模板的实例化
用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。(你需要什么就跟据参数类型由编译器生成对应的函数)
1.隐式实例化:让编译器根据实参推演模板参数的实际类型
template<typename T>
T Add(const T& left, const T& right)//不对实参产生影响
{
return left + right;
}
int main()
{
int a = 1, b = 2;
cout << Add(a, b) << endl;
double c = 1.1, d = 1.2;
cout << Add(a, d) << endl;//该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
//通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
// 编译器无法确定此处到底该将T确定为int 或者 double类型而报错
// 注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
//解决:1.类型强转,让二者一致Add(a,(int)d);
// 2.使用显示实例化
return 0;
}
除了显式实例化,还有一种方式->设置两个类型名,然后用auto做返回值(auto不能做参数)
2.显式实例化:在函数名后的<>中指定模板参数的实际类型(直接指定类型,编译器不在推演参数类型)
如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。
2.5 模板参数的匹配原则
1.一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模 板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
3. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换(隐式类型转换)
3.类模板
为什么要有类模板?那我们之前用C++(类和对象上)写的栈来看
#pragma once
#include<iostream>
using namespace std;
//C++写的话,把类写在头文件里
//跟之前差不多
typedef int DataType;
class Stack
{
public:
void Init()
{
_array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = 3;
_size = 0;
}
void Destroy()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
int main()
{
Stack s1;
Stack s2;
return 0;
}
我们创建的s1,s2必须是同一种类型的(STDataType),那我们可不可以创建一个int类型的,在创建一个double类型的呢?这就用到了类模板
3.1 类模板的格式
template<class T1, class T2, ..., class Tn>
class 类模板名
{
// 类内成员定义
};
2. 类模板的实例化
类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类
Stack<int> 和 Stack<double>是类型,Stack只是类名了
3.类模板中函数声明和定义分离
//模板不建议声明和定义分离到.h和.cpp两个文件中,会造成链接错误