【6D位姿估计】数据集汇总 BOP

前言

BOP是6D位姿估计基准,汇总整理了多个数据集,还举行挑战赛,相关报告被CVPR2024接受和认可。

它提供3D物体模型和RGB-D图像,其中标注信息包括6D位姿、2D边界框和2D蒙版等。

包含数据集:LM 、LM-O  、T-LESS 、ITODD 、HB 、HOPE 、YCB-V 、RU-APC 、IC-BIN 、IC-MI 、TUD-L、TYO-L 

数据集汇总地址:https://bop.felk.cvut.cz/datasets/

BOP细分数据集标注内容特点
数据集LM15 件无纹理的家居用品,具有不同的颜色、形状和大小该实例具有明显的杂波,但只有轻微的遮挡
LM-O 15 件无纹理的家居用品,具有不同的颜色、形状和大小在LM基础上引入了不同遮挡级别的干扰
T-LESS30 个与工业相关的物体没有明显的纹理或可辨别的颜色
ITODD28 个真实的工业环境中物体使用高质量的 Gray-D 传感器拍摄
HB33 个物体,包括17 个玩具物体、8 个家居物体和 8 个行业相关物体在 13 个场景中捕获,复杂程度各不相同
HOPE28 个玩具杂货物品,10 个家庭/办公环境中的 50 个场景中捕获杂乱场景,有不同程度的遮挡
YCB-V21个日常生活物品,具有有不同形状、大小、纹理、重量和刚度在92个视频中捕获
RU-APC14 个纹理物品,杂乱仓库货架场景杂乱场景
IC-BIN2个物体,来自IC-MI的箱子拾取场景受到严重遮挡
IC-MI2个无纹理和4个有纹理的家居用品具有杂乱和轻微遮挡
TUD-L3个移动物体,8种照明变化场景8种照明条件下的移动物体
TYO-L21 个物体,每个物体在桌面设置中以多种姿势捕捉有4个不同的 桌布和五种不同的照明条件

一、数据集下载

BOP提供了整理汇总后的数据集

下载地址:https://huggingface.co/datasets/bop-benchmark/datasets/tree/main

比如下载YCB-V数据集,点进去能看到,然后点击下载即可

或者下载LM(Linemod)数据集:

二、数据格式

默认采用 BOP-webdataset 格式,数据集具有以下结构:

DATASET_NAME
├─ camera[_TYPE].json        # 相机参数(仅用于模拟传感器)
├─ dataset_info.json         # 特定于数据集的信息
├─ test_targets_bop19.json   # 用于评估的测试目标列表BOP挑战赛 2019/2020/2022等。
├─ models[_MODELTYPE][_eval] # 3D物体模型
│  ├─ models_info.json
│  ├─ obj_OBJ_ID.ply
├─ train|val|test[_TYPE]     # 对应训练集、验证集、测试集
│  ├─ SCENE_ID|OBJ_ID
│  │  ├─ scene_camera.json   # 相机参数(真实数据的相机)
│  │  ├─ scene_gt.json       
│  │  ├─ scene_gt_info.json
│  │  ├─ depth               # 深度图
│  │  ├─ mask                # 物体完整mask掩码图
│  │  ├─ mask_visib          # 物体实际可见部分的mask掩码图
│  │  ├─ rgb|gray            # 彩色图/灰度图
  • 其中,相应图像具有相同的 ID,例如 rgb/000000.png 和 depth/000000.png 是颜色和深度图像 相同的RGB-D帧。
  • 掩码的命名约定是IMID_GTID.png, 其中 IMID 是影像 ID,GTID 是真值注释的索引 (存储在scene_gt.json中)。

详细介绍参考官方文档:https://github.com/thodan/bop_toolkit/blob/master/docs/bop_datasets_format.md 

2.1 相机参数 scene_camera.json

通常每个物体有一组图像数据,数据集有多个物体,形成多组数据。

每组图像都有文件scene_camera.json,表示真实相机的参数,其中包含每个图像的以下信息:

  • cam_K - 3x3 固有相机矩阵 K。
  • depth_scale - 将深度图像乘以此系数,得到以毫米为单位的深度。
  • cam_R_w2c(可选)- 3x3 旋转矩阵R_w2c。
  • cam_t_w2c(可选)- 3x1 平移向量t_w2c。
  • view_level(可选)- 视点细分级别。

注意,每个图像的矩阵 K 可能不同。camera.json仅表示用于在渲染训练图像时模拟使用的传感器。

2.2 真实姿势信息 scene_gt_info.json

文件scene_gt_info.json中提供了以下有关地面真实姿势的信息:

  • bbox_obj - 对象轮廓的 2D 边界框,由 (x,y ,width,height),其中(x, y)是边界框的左上角。
  • bbox_visib - 对象剪影可见部分的 2D 边界框。
  • px_count_all - 对象侧面像中的像素数。
  • px_count_valid - 对象侧面图像中具有有效 深度测量(即深度图像中的非零值)。
  • px_count_visib - 对象可见部分的像素数 剪影。
  • visib_fract - 对象轮廓的可见部分 (= px_count_visib/px_count _all)。

2.3 3D物体模型

3D 对象模型以PLY格式提供,包括顶点法线。

  • 大多数模型还包括顶点颜色或顶点纹理与保存为单独图像的纹理相协调。
  • 顶点法线是使用 MeshLab 作为面的角度加权和计算的 入射到顶点的法线
  • 每个包含对象模型的文件夹都包含文件models_info.json,其中包括每个对象模型的 3D 边界框和直径。直径为计算为任意一对模型顶点之间的最大距离。

2.4 坐标系

所有坐标系(模型、相机、世界)都是右手坐标系。

  • 在模型坐标系中,Z 轴指向上方(当对象 站立“自然直立”),原点与中心重合 对象模型的 3D 边界框。
  • 相机坐标系与 OpenCV 中一样,相机沿 Z 轴查看。

单位信息:

  • 3D 物体模型:1 毫米
  • 平移矢量: 1 mm

2.5 数据格式示例

以YCB-V数据集为例,看下其中一个物体的示例数据:

depth文件夹存放深度图

mask文件夹中,存放物体完整mask掩码图

mask_visib文件夹中,存放物体实际可见部分的mask掩码图

rgb文件夹存放彩色图片

scene_camera.json文件

{
  "1": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.775038, 0.630563, -0.0413049, 0.1427, -0.238322, -0.960645, -0.615591, 0.738643, -0.27469], "cam_t_w2c": [22.278120142899976, 67.27103635299997, 833.583980809], "depth_scale": 0.1},
  "36": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.780182, 0.625096, -0.0238987, 0.151021, -0.225288, -0.962516, -0.607049, 0.747329, -0.270168], "cam_t_w2c": [5.508214978099937, 64.68344464100001, 825.7533207070001], "depth_scale": 0.1},
  "47": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.767769, 0.640207, -0.0257968, 0.152583, -0.221792, -0.963082, -0.622293, 0.735488, -0.26797], "cam_t_w2c": [27.66960968699998, 63.071926080000004, 832.8279904959999], "depth_scale": 0.1},
  "83": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.747494, 0.663726, -0.0268341, 0.151009, -0.209129, -0.966158, -0.646876, 0.718145, -0.256551], "cam_t_w2c": [47.37378315260004, 70.23191834300002, 839.83011703], "depth_scale": 0.1},
  "112": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.732966, 0.679258, -0.0369964, 0.154704, -0.219403, -0.963291, -0.66244, 0.700336, -0.265899], "cam_t_w2c": [57.30521621640001, 60.03261259300005, 845.084446656], "depth_scale": 0.1},
  "1024": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.221497, 0.974633, -0.0320828, 0.293663, -0.0980389, -0.950868, -0.929893, 0.201193, -0.307929], "cam_t_w2c": [84.5553717548, 78.09197834190002, 966.855761809], "depth_scale": 0.1},
  "1027": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.208285, 0.977538, -0.0322094, 0.291752, -0.0935287, -0.95191, -0.933541, 0.188871, -0.304679], "cam_t_w2c": [95.29885425239999, 83.36950151319999, 964.165435848], "depth_scale": 0.1},
  "1059": {"cam_K": [1066.778, 0.0, 312.9869, 0.0, 1067.487, 241.3109, 0.0, 0.0, 1.0], "cam_R_w2c": [0.184825, 0.982726, -0.00947274, 0.310088, -0.0674605, -0.948311, -0.932569, 0.172334, -0.3172], "cam_t_w2c": [100.85003064122, 67.49651895950004, 969.0728422079999], "depth_scale": 0.1},
...
}

scene_gt.json文件

{
  "1": [{"cam_R_m2c": [0.6155426282490462, -0.7872002747152219, -0.03771988906432555, -0.19894986552077276, -0.10889926681888931, -0.9739401059834828, 0.7625789371251613, 0.6070060649389416, -0.22364550906920733], "cam_t_m2c": [-31.677025422232273, -17.368816807616497, 865.056765056294], "obj_id": 1}, {"cam_R_m2c": [-0.888800154374123, 0.45524946687574985, -0.05275501966907288, 0.15161264602174085, 0.18344755196788856, -0.9712669209190921, -0.4324911950904046, -0.8712604167821704, -0.2320697374100931], "cam_t_m2c": [19.826959191155, 56.52491050704691, 810.7227026810766], "obj_id": 6}, {"cam_R_m2c": [0.800270328363595, -0.5984833728683278, -0.03721742358490441, -0.16673638817023093, -0.16247691893389601, -0.97252257766676, 0.5759917033378716, 0.7844862673094515, -0.22981459219802255], "cam_t_m2c": [-23.310093543898354, -112.62940453072957, 848.1679482820954], "obj_id": 14}, {"cam_R_m2c": [-0.09489741249029623, 0.3561386300696222, -0.9296019480411393, -0.34937416104044705, 0.8625018988232865, 0.36609704814610067, 0.932165006412512, 0.3595205652274382, 0.04257586846391211], "cam_t_m2c": [52.33599371521044, -13.031296641365195, 861.5899289137005], "obj_id": 19}, {"cam_R_m2c": [-0.9984789779904625, -0.046702003100451896, 0.029310392655164948, 0.04118009201782687, -0.27814158992816, 0.9596564448294642, -0.036666017780062427, 0.9594042011059428, 0.27964165456635065], "cam_t_m2c": [-24.98442834314123, 91.09670661036117, 685.170819763342], "obj_id": 20}],
  "36": [{"cam_R_m2c": [0.609160304011732, -0.7927779371553533, -0.020665842847375732, -0.18625494062652728, -0.11768910284587072, -0.9754267744096374, 0.7708650760967027, 0.5980404962914244, -0.2193500045932242], "cam_t_m2c": [-47.54392055014297, -20.624979740453274, 857.3694396811588], "obj_id": 1}, {"cam_R_m2c": [-0.885654032823929, 0.46297766711836735, -0.03563597970836668, 0.13642613789028796, 0.18608279820967355, -0.9730156842215326, -0.4438532397201184, -0.8666167711437901, -0.22796686931874305], "cam_t_m2c": [3.517734961917874, 53.76740226064, 803.2989808314162], "obj_id": 6}, {"cam_R_m2c": [0.7956314653073248, -0.6054474964433687, -0.020109911212931725, -0.15218610956201728, -0.1676389990666953, -0.9740308438419983, 0.5863531148783824, 0.7780298269242845, -0.2255194250661368], "cam_t_m2c": [-37.57128763014816, -115.82934553753682, 841.044974335238], "obj_id": 14}, {"cam_R_m2c": [-0.10098129392773866, 0.3390290986563458, -0.9353408405023759, -0.34637500340565003, 0.8693469251931312, 0.35250354851560134, 0.9326447803199308, 0.35957456267807025, 0.029642972835050057], "cam_t_m2c": [36.431813052732934, -15.061671846474432, 854.889665423068], "obj_id": 19}, {"cam_R_m2c": [-0.9984623750612651, -0.05417273393821578, 0.011792611042814375, 0.02623639801568292, -0.274310799977981, 0.9612824039468447, -0.04884079999762013, 0.9601139585387595, 0.27530992305310614], "cam_t_m2c": [-40.27985947489197, 87.0849679017978, 677.0522075201466], "obj_id": 20}],
  "47": [{"cam_R_m2c": [0.6245636521890725, -0.7806766111406835, -0.02154245471722178, -0.18248158481557564, -0.11905916022552619, -0.975974147637646, 0.7593548693744658, 0.6134888758861301, -0.21681937469597998], "cam_t_m2c": [-24.395090683468215, -21.783960857519098, 865.0794295130081], "obj_id": 1}, {"cam_R_m2c": [-0.894520458378818, 0.4455202651911757, -0.03668433387925216, 0.13243670002639793, 0.18573890794853912, -0.9736329537290823, -0.42695875163671215, -0.8757921280786526, -0.22515068766577487], "cam_t_m2c": [25.357235475837868, 52.66179328072182, 809.873745451658], "obj_id": 6}, {"cam_R_m2c": [0.807320112848335, -0.5897361063376075, -0.02111051938004192, -0.1481874231217827, -0.16797481282866994, -0.9745899708885118, 0.5712038666214954, 0.7899336536550774, -0.22300135488429054], "cam_t_m2c": [-14.412173387618193, -116.98979989756661, 848.76946639409], "obj_id": 14}, {"cam_R_m2c": [-0.08176790305726558, 0.34291594675714004, -0.9358005665368483, -0.34465464710178356, 0.8712861049416898, 0.34938989394733905, 0.9351606006571631, 0.3510967987887798, 0.046944407423005166], "cam_t_m2c": [59.49748765951539, -15.940989444141788, 860.9665492937945], "obj_id": 19}, {"cam_R_m2c": [-0.9993032187000758, -0.03468586763469483, 0.013799769394337228, 0.02273746658654025, -0.27237133848523803, 0.9619233928797483, -0.02960648331060263, 0.9615662504172701, 0.2729703664836574], "cam_t_m2c": [-20.983454465364908, 85.55142809136696, 684.4252367092936], "obj_id": 20}],
  "83": [{"cam_R_m2c": [0.6483560298162269, -0.7610510488761957, -0.02086610662784509, -0.1692011189126235, -0.11731610680604301, -0.9785743648106761, 0.7422968557005021, 0.6379953191679695, -0.2048329708565904], "cam_t_m2c": [-3.182798020397842, -14.00835493497242, 873.8116262427217], "obj_id": 1}, {"cam_R_m2c": [-0.9078584178495492, 0.4177062056136942, -0.03626756862269121, 0.12116889278699025, 0.17857338188688224, -0.9764368511592453, -0.4013865966547271, -0.8908605421313989, -0.21273198641370872], "cam_t_m2c": [44.345559041277, 60.13133053644625, 816.2833963297118], "obj_id": 6}, {"cam_R_m2c": [0.8251367861465224, -0.5645561164478825, -0.020629748503466508, -0.13583743253946046, -0.16282504159094316, -0.9772597366958712, 0.5483580610786056, 0.8091749254401457, -0.2110406512057419], "cam_t_m2c": [7.00537338156821, -109.3266555886105, 858.3053675688028], "obj_id": 14}, {"cam_R_m2c": [-0.051182081267789885, 0.34687788183738805, -0.9365126806882695, -0.33423610323086433, 0.8777158286503173, 0.3433663873103977, 0.9410979073728976, 0.3305899343507701, 0.07101581339481473], "cam_t_m2c": [80.50375242502996, -7.627733393267646, 867.1132222035583], "obj_id": 19}, {"cam_R_m2c": [-0.9998814983012471, -0.003861774590082771, 0.014912517026945876, 0.015403543280134506, -0.26132102760791526, 0.9651287621047637, 0.0001699907030837675, 0.9652438747296362, 0.2613491515087478], "cam_t_m2c": [-5.972908641135359, 91.22401864073694, 691.9137142738838], "obj_id": 20}],
  "112": [{"cam_R_m2c": [0.6647649468317126, -0.7464489096042396, -0.03001657167948718, -0.17934682759164805, -0.1204579130201553, -0.9763836821566041, 0.725204605642379, 0.6544489331842311, -0.21394953128846064], "cam_t_m2c": [7.423095042063199, -24.208037318315366, 878.8066953601489], "obj_id": 1}, {"cam_R_m2c": [-0.9164409834258465, 0.3975651734102653, -0.045588733607644205, 0.12901204313969786, 0.1856895576876478, -0.9741022379218828, -0.3788031962736472, -0.8985881514318583, -0.22146426682502685], "cam_t_m2c": [53.92454489616582, 50.30051928831908, 820.916944720947], "obj_id": 6}, {"cam_R_m2c": [0.8371121143302147, -0.5462122309108142, -0.029919488718101708, -0.14479700119590075, -0.1685049959179436, -0.9750081519139011, 0.5275190636003836, 0.8205228433109507, -0.22014774919225136], "cam_t_m2c": [16.82039765317768, -119.40906570753043, 862.1248702849944], "obj_id": 14}, {"cam_R_m2c": [-0.03066579499454619, 0.35842471964468575, -0.9330546466130516, -0.3433961351884973, 0.8728955476024446, 0.34660120723264787, 0.9386892054263638, 0.3310359762596514, 0.09631358656249628], "cam_t_m2c": [90.9578870625636, -18.115127756738985, 870.214102795854], "obj_id": 19}, {"cam_R_m2c": [-0.9995255713303868, 0.017530980458125914, 0.02532545822207572, 0.019633115389425172, -0.27092669739461855, 0.9623997900400193, 0.023733079584714534, 0.9624400538470402, 0.27045397974048285], "cam_t_m2c": [0.8525459893978651, 82.84611660913978, 698.0728419733201], "obj_id": 20}],
  "1024": [{"cam_R_m2c": [0.9704843061877538, -0.24109489453234348, 0.005747985968890892, -0.05702875853463301, -0.2525872788160113, -0.9658917605444589, 0.23432352592357092, 0.9370555030237454, -0.2588812841574994], "cam_t_m2c": [71.41915012233497, -8.855300323114646, 1000.9610991395713], "obj_id": 1}, {"cam_R_m2c": [-0.9818049404650917, -0.1895412287960604, -0.011535627356135513, -0.03769862638683262, 0.25409208731971417, -0.9664445035770324, 0.18611318695445572, -0.9484256537221011, -0.2566141917897591], "cam_t_m2c": [67.01964196225809, 72.7948380863339, 934.7868376282179], "obj_id": 6}, {"cam_R_m2c": [0.9997595271389749, 0.021799496359123954, 0.0022441839567555817, 0.007919269824689405, -0.26388702002464454, -0.9645210969783664, -0.020434334502123813, 0.9643072544399508, -0.2639963679079688], "cam_t_m2c": [84.42283358552737, -100.81966035400322, 972.6189230163418], "obj_id": 14}, {"cam_R_m2c": [0.5378109085736478, 0.3445428353846606, -0.7694472931938168, -0.3433293601926506, 0.9230761784574881, 0.17336187404666403, 0.76998924176551, 0.17093743837230568, 0.6147327127097234], "cam_t_m2c": [134.73122615884228, 12.143600548964699, 949.5835934469427], "obj_id": 19}, {"cam_R_m2c": [-0.8145733310772104, 0.5795937271002144, 0.023271274982038334, -0.16022702734378425, -0.2633815493028152, 0.9512920548835528, 0.5574926601599337, 0.77116864864905, 0.3074100481839816], "cam_t_m2c": [-48.587286695603, 95.27932302573576, 863.400450652429], "obj_id": 20}],
  "1027": [{"cam_R_m2c": [0.9736380541620182, -0.2280117975833827, 0.006327552801320991, -0.05238012971444529, -0.25049721582618745, -0.9666989890232974, 0.22200334685406545, 0.9408839944912755, -0.25583655962012575], "cam_t_m2c": [82.84236377136222, -3.202382029485854, 998.3668973579089], "obj_id": 1}, {"cam_R_m2c": [-0.9791725627289203, -0.20273762671433873, -0.010923135997289196, -0.0410220439845687, 0.2502411897729927, -0.9673135255248978, 0.19884576291409187, -0.9467190984057884, -0.2533455910721295], "cam_t_m2c": [77.26279404150836, 78.21354304065359, 931.9933078713171], "obj_id": 6}, {"cam_R_m2c": [0.999374696732068, 0.03525470569420298, 0.0027528023614022453, 0.011854531524012881, -0.2606557192210831, -0.9653590276533489, -0.03331690907664211, 0.9647882098792482, -0.26091052240056956], "cam_t_m2c": [95.85264694795609, -95.20576749627322, 970.1547235570508], "obj_id": 14}, {"cam_R_m2c": [0.5490441191287648, 0.34297485437741737, -0.7621805354210485, -0.33866431656913015, 0.9249997374251607, 0.17228159729595274, 0.7641048830135074, 0.1635321897826169, 0.624019860272118], "cam_t_m2c": [145.4036728839161, 17.882345049387965, 946.1122610800769], "obj_id": 19}, {"cam_R_m2c": [-0.8066888252132398, 0.5905149883916639, 0.023371657751691022, -0.16166990776914283, -0.25854647899038274, 0.95237368538674, 0.5684344898274531, 0.764490516199126, 0.30403461998260806], "cam_t_m2c": [-39.34184312110956, 100.00247891645904, 862.0280513435945], "obj_id": 20}],
  "1059": [{"cam_R_m2c": [0.9782295367682443, -0.20533659652444655, 0.030068581891794056, -0.026945973299812093, -0.269340018094528, -0.9626676876287587, 0.20576934213763715, 0.9409000441338533, -0.2690093747814608], "cam_t_m2c": [91.91297764509498, -19.065713859707213, 1001.8789157884851], "obj_id": 1}, {"cam_R_m2c": [-0.9742128751147976, -0.22526372153623223, 0.012885668716460606, -0.07208852214553628, 0.25663206687277745, -0.9638163225739518, 0.21380719264399567, -0.9398914255637064, -0.26625313092092107], "cam_t_m2c": [82.90533755190265, 63.01687304404585, 936.714193434043], "obj_id": 6}, {"cam_R_m2c": [0.9979408481092544, 0.05846768501180202, 0.026374504656193298, 0.041352748038722534, -0.27214957636651804, -0.9613658434349226, -0.049031741700048634, 0.9604769635513392, -0.2740072162843031], "cam_t_m2c": [107.1130420578321, -110.27386886274778, 972.2166924287133], "obj_id": 14}, {"cam_R_m2c": [0.5709597738530855, 0.31874303674173754, -0.7565764595490821, -0.3325428987822525, 0.9323597738062869, 0.1418421956290973, 0.750612474435284, 0.17060742606646714, 0.6383363540398707], "cam_t_m2c": [152.9804531357707, 4.513159355754437, 948.9277642986692], "obj_id": 19}, {"cam_R_m2c": [-0.7923237136450533, 0.6101010484593035, 0.000812568704820232, -0.1925048617747842, -0.2512647153904161, 0.9485814388073351, 0.5789352987188576, 0.7514269629780099, 0.3165303330408628], "cam_t_m2c": [-35.40333944213483, 82.3207125125342, 868.9133541232341], "obj_id": 20}],
...
}

scene_gt_info.json文件

{
  "1": [{"bbox_obj": [206, 126, 132, 194], "bbox_visib": [206, 128, 132, 192], "px_count_all": 23236, "px_count_valid": 21318, "px_count_visib": 21729, "visib_fract": 0.9351437424685832}, {"bbox_obj": [282, 280, 112, 73], "bbox_visib": [282, 280, 112, 73], "px_count_all": 7335, "px_count_valid": 4794, "px_count_visib": 7316, "visib_fract": 0.9974096796182685}, {"bbox_obj": [209, 45, 137, 113], "bbox_visib": [209, 45, 137, 113], "px_count_all": 12243, "px_count_valid": 10658, "px_count_visib": 12206, "visib_fract": 0.9969778649023932}, {"bbox_obj": [329, 116, 90, 213], "bbox_visib": [329, 116, 90, 213], "px_count_all": 7586, "px_count_valid": 5142, "px_count_visib": 7448, "visib_fract": 0.9818085947798576}, {"bbox_obj": [92, 332, 349, 127], "bbox_visib": [92, 332, 349, 127], "px_count_all": 25062, "px_count_valid": 16519, "px_count_visib": 25044, "visib_fract": 0.999281781182667}],
  "36": [{"bbox_obj": [186, 122, 132, 194], "bbox_visib": [186, 124, 132, 192], "px_count_all": 23617, "px_count_valid": 21257, "px_count_visib": 22245, "visib_fract": 0.9419062539695982}, {"bbox_obj": [260, 277, 113, 73], "bbox_visib": [260, 277, 113, 73], "px_count_all": 7411, "px_count_valid": 4406, "px_count_visib": 7411, "visib_fract": 1.0}, {"bbox_obj": [191, 40, 137, 112], "bbox_visib": [191, 40, 137, 112], "px_count_all": 12409, "px_count_valid": 11153, "px_count_visib": 12382, "visib_fract": 0.9978241598839552}, {"bbox_obj": [311, 112, 87, 215], "bbox_visib": [311, 112, 87, 215], "px_count_all": 7724, "px_count_valid": 5485, "px_count_visib": 7681, "visib_fract": 0.994432936302434}, {"bbox_obj": [63, 326, 355, 127], "bbox_visib": [63, 326, 355, 127], "px_count_all": 25528, "px_count_valid": 18324, "px_count_visib": 25413, "visib_fract": 0.9954951425885302}],
  "47": [{"bbox_obj": [216, 122, 130, 192], "bbox_visib": [216, 124, 130, 190], "px_count_all": 23159, "px_count_valid": 21000, "px_count_visib": 21673, "visib_fract": 0.9358348806079709}, {"bbox_obj": [289, 275, 112, 73], "bbox_visib": [289, 275, 112, 73], "px_count_all": 7260, "px_count_valid": 4759, "px_count_visib": 7260, "visib_fract": 1.0}, {"bbox_obj": [222, 40, 135, 111], "bbox_visib": [222, 40, 135, 111], "px_count_all": 12125, "px_count_valid": 10929, "px_count_visib": 12099, "visib_fract": 0.9978556701030927}, {"bbox_obj": [340, 111, 86, 215], "bbox_visib": [340, 111, 86, 215], "px_count_all": 7553, "px_count_valid": 5084, "px_count_visib": 7461, "visib_fract": 0.9878194095061565}, {"bbox_obj": [97, 322, 350, 124], "bbox_visib": [97, 322, 350, 124], "px_count_all": 24848, "px_count_valid": 15756, "px_count_visib": 24838, "visib_fract": 0.9995975531229878}],
  "83": [{"bbox_obj": [244, 133, 127, 189], "bbox_visib": [244, 135, 127, 187], "px_count_all": 22665, "px_count_valid": 19893, "px_count_visib": 21319, "visib_fract": 0.9406132803882639}, {"bbox_obj": [315, 285, 111, 71], "bbox_visib": [315, 285, 111, 71], "px_count_all": 7128, "px_count_valid": 4491, "px_count_visib": 7124, "visib_fract": 0.999438832772166}, {"bbox_obj": [250, 52, 133, 110], "bbox_visib": [250, 52, 133, 110], "px_count_all": 11838, "px_count_valid": 9909, "px_count_visib": 11814, "visib_fract": 0.9979726305119108}, {"bbox_obj": [366, 123, 84, 213], "bbox_visib": [366, 123, 84, 213], "px_count_all": 7510, "px_count_valid": 5251, "px_count_visib": 7389, "visib_fract": 0.9838881491344873}, {"bbox_obj": [123, 330, 346, 120], "bbox_visib": [123, 330, 346, 120], "px_count_all": 24201, "px_count_valid": 15320, "px_count_visib": 24158, "visib_fract": 0.9982232139167803}],
  "112": [{"bbox_obj": [257, 121, 127, 188], "bbox_visib": [257, 122, 127, 187], "px_count_all": 22397, "px_count_valid": 20236, "px_count_visib": 21050, "visib_fract": 0.939858016698665}, {"bbox_obj": [327, 272, 111, 71], "bbox_visib": [327, 272, 111, 71], "px_count_all": 7043, "px_count_valid": 4349, "px_count_visib": 7035, "visib_fract": 0.9988641204032372}, {"bbox_obj": [262, 41, 133, 109], "bbox_visib": [262, 41, 133, 109], "px_count_all": 11731, "px_count_valid": 10683, "px_count_visib": 11647, "visib_fract": 0.9928394851248827}, {"bbox_obj": [378, 110, 85, 212], "bbox_visib": [378, 110, 85, 212], "px_count_all": 7558, "px_count_valid": 5128, "px_count_visib": 7393, "visib_fract": 0.9781688277322043}, {"bbox_obj": [134, 317, 344, 118], "bbox_visib": [134, 317, 344, 118], "px_count_all": 23666, "px_count_valid": 14994, "px_count_visib": 23584, "visib_fract": 0.9965351136651737}],
  "1024": [{"bbox_obj": [334, 149, 112, 170], "bbox_visib": [334, 154, 112, 165], "px_count_all": 17627, "px_count_valid": 15328, "px_count_visib": 15641, "visib_fract": 0.8873319339649401}, {"bbox_obj": [341, 292, 97, 66], "bbox_visib": [341, 292, 97, 66], "px_count_all": 5742, "px_count_valid": 3714, "px_count_visib": 5705, "visib_fract": 0.9935562521769419}, {"bbox_obj": [342, 80, 127, 101], "bbox_visib": [342, 80, 127, 101], "px_count_all": 9552, "px_count_valid": 8781, "px_count_visib": 9541, "visib_fract": 0.9988484087102177}, {"bbox_obj": [428, 154, 97, 198], "bbox_visib": [428, 154, 97, 198], "px_count_all": 9981, "px_count_valid": 7073, "px_count_visib": 9943, "visib_fract": 0.9961927662558862}, {"bbox_obj": [94, 301, 253, 118], "bbox_visib": [94, 301, 253, 118], "px_count_all": 13689, "px_count_valid": 9113, "px_count_visib": 13622, "visib_fract": 0.9951055592081233}],
  "1027": [{"bbox_obj": [346, 155, 113, 170], "bbox_visib": [346, 159, 113, 166], "px_count_all": 17731, "px_count_valid": 15453, "px_count_visib": 15699, "visib_fract": 0.885398454683887}, {"bbox_obj": [352, 298, 98, 66], "bbox_visib": [352, 298, 98, 66], "px_count_all": 5778, "px_count_valid": 3499, "px_count_visib": 5778, "visib_fract": 1.0}, {"bbox_obj": [355, 86, 127, 101], "bbox_visib": [355, 86, 127, 101], "px_count_all": 9650, "px_count_valid": 8657, "px_count_visib": 9639, "visib_fract": 0.998860103626943}, {"bbox_obj": [441, 161, 97, 198], "bbox_visib": [441, 161, 97, 198], "px_count_all": 10080, "px_count_valid": 6927, "px_count_visib": 9978, "visib_fract": 0.9898809523809524}, {"bbox_obj": [105, 306, 253, 120], "bbox_visib": [105, 306, 253, 120], "px_count_all": 13745, "px_count_valid": 9595, "px_count_visib": 13491, "visib_fract": 0.9815205529283376}],
  "1059": [{"bbox_obj": [354, 138, 116, 170], "bbox_visib": [354, 140, 116, 168], "px_count_all": 17615, "px_count_valid": 14947, "px_count_visib": 15552, "visib_fract": 0.8828839057621345}, {"bbox_obj": [359, 281, 97, 65], "bbox_visib": [359, 281, 97, 65], "px_count_all": 5683, "px_count_valid": 3645, "px_count_visib": 5676, "visib_fract": 0.9987682562027098}, {"bbox_obj": [368, 69, 127, 102], "bbox_visib": [368, 69, 127, 102], "px_count_all": 9599, "px_count_valid": 8503, "px_count_visib": 9585, "visib_fract": 0.9985415147411189}, {"bbox_obj": [450, 146, 95, 196], "bbox_visib": [450, 146, 95, 196], "px_count_all": 10051, "px_count_valid": 5521, "px_count_visib": 9989, "visib_fract": 0.9938314595562631}, {"bbox_obj": [112, 284, 249, 121], "bbox_visib": [112, 284, 249, 121], "px_count_all": 13366, "px_count_valid": 8972, "px_count_visib": 13219, "visib_fract": 0.9890019452341763}],
...
}

三、BOP Challenge 2023数据集(CVPR2024)

这些数据集包括超过 2M 张图像,显示超过 50K 个不同的对象。

这些图像最初是使用 BlenderProc 为 MegaPose 合成的。这些对象来自 Google Scanned Objects 和 ShapeNetCore 数据集,其 3D 模型可从各自的网站下载。

3.1 MegaPose-GSO数据集

  • 3D物体模型可以从Google扫描物体下载。为了使模型与 GT 姿势兼容,需要将对象居中并重新缩放它们,使其适合单位球体,以及将归一化模型缩放 0.1。有关伪代码,参阅此注释。
  • 从 BOP 中使用的obj_id映射到原始对象标识符
  • 从映像键映射到存储该键的分片索引
  • 数据集采用BOP-webdataset格式,分为1040个分片,每个分片包含~1000张图片以及对象注解和相机参数。

使用以下 URL 模板下载分片( is from to )。<SHARD-ID>000000至001039

https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main/MegaPose-GSO/shard-<SHARD-ID>.tar

 比如:

https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-000000.tar
https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-000001.tar
......
https://bop.felk.cvut.cz/media/data/bop_datasets/bop23_datasets/megapose-gso/train_pbr_web/shard-001039.tar

3.2 MegaPose-ShapeNetCore 数据集

  • 可以从 ShapeNet 下载 3D 对象模型(将模型缩放 0.1 以与 GT 姿势兼容)
  • 从 BOP 中使用的obj_id映射到原始对象标识符
  • 从映像键映射到存储该键的分片索引
  • 数据集采用BOP-webdataset格式,分为1040个分片,每个分片包含~1000张图片以及对象注解和相机参数。

使用以下 URL 模板下载分片( is from to )。<SHARD-ID>000000至001039

https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main/MegaPose-ShapeNetCore/shard-<SHARD-ID>.tar

四、BOP挑战赛 6D位姿估计

BOP Challenge 2023 报告已被 CVPR 2024接收和认可,下面6D位姿估计的排行榜。

主要在LM-O, T-LESS, TUD-L, IC-BIN, ITODD, HB, YCB-V数据集进行训练和测试的。

对应可见物体的测试,排行榜:https://bop.felk.cvut.cz/leaderboards/

对应不可见物体的测试,排行榜:https://bop.felk.cvut.cz/leaderboards/pose-estimation-unseen-bop23/core-datasets/

推荐一下Top2的方法:

Top1——FoundationPose CVPR2024 ,https://github.com/NVlabs/FoundationPose

Top2——SAM-6D CVPR2024 ,https://github.com/JiehongLin/SAM-6D/

分享完成~

本文先介绍到这里,后面会分享“6D位姿估计”的其它数据集、算法、代码、具体应用示例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/596361.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

android系统serviceManger源码解析

一&#xff0c;serviceManger时序图 本文涉及到的源码文件&#xff1a; /frameworks/native/cmds/servicemanager/main.cpp /frameworks/native/libs/binder/ProcessState.cpp /frameworks/native/cmds/servicemanager/ServiceManager.cpp /frameworks/native/libs/binder/IP…

练习题(2024/5/6)

1路径总和 II 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], target…

【数据结构】C++语言实现栈(详细解读)

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话&#xff1a; 知不足而奋进&#xff0c;望远山而前行&am…

【携程笔试题汇总】[全网首发] 2024-05-06-携程春招笔试题-三语言题解(CPP/Python/Java)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新携程近期的春秋招笔试题汇总&#xff5e; &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f49…

【网心云邀请码:KpyV3Dk7】轻松赚油费,新用户专享福利来袭!绑定设备连续在线7 天必得高额奖励

&#x1f4e2; 各位朋友们&#xff0c;好消息来啦&#xff01;现在注册网心云&#xff0c;通过我们的专属邀请码&#xff1a;KpyV3Dk7 &#xff0c;即可享受多重新手福利&#xff0c;让您的闲置设备为您赚钱&#xff01; &#x1f4b8; 立即加入&#xff0c;您将获得&#xff1…

代码本地化

目的 代码本地化&#xff08;Localization&#xff09;是指将软件应用程序中的文本、图形、声音和其他内容翻译成特定语言的过程&#xff0c;同时确保这些内容在目标文化中适当地呈现。本地化不仅仅是对文本进行翻译&#xff0c;还包括对日期、时间、数字、货币、排序顺序、文本…

生成一个好故事!StoryDiffusion:一致自注意力和语义运动预测器必不可少(南开字节)

文章链接&#xff1a;https://arxiv.org/pdf/2405.01434 主页&#xff1a;https://storydiffusion.github.io/ 对于最近基于扩散的生成模型来说&#xff0c;在一系列生成的图像中保持一致的内容&#xff0c;尤其是那些包含主题和复杂细节的图像&#xff0c;是一个重大挑战。本…

C/C++ BM32 合并二叉树

文章目录 前言题目解决方案一1.1 思路阐述1.2 源码 解决方案二2.1 思路阐述2.2 源码 总结 前言 树的题目大概率是要用到递归的&#xff0c;将一个树的问题拆分成子树的问题&#xff0c;不断拆分。 这题也用到了递归的思想。 题目 已知两颗二叉树&#xff0c;将它们合并成一颗…

腾讯地图商业授权说明一篇文章讲清楚如何操作

最近在使用腾讯地图&#xff0c;发现我要上架应用商店APP需要我有地图的授权书。 认真研究了一下原来腾讯地图现在要收费了&#xff0c;如果你打算以商业目的使用它&#xff0c;比如对第三方用户收费或者进行项目投标等&#xff0c;就需要先获取腾讯位置服务的商业授权许可。申…

网络演进技术演进:裸纤专线、SDH、MSTP+、OTN、PTN、IP-RAN

前言 文章主要介绍常见名词以及其在各自领域实现的功能价值。 01 裸纤 裸光纤&#xff08;裸光纤&#xff09;由运营商提供&#xff0c;是无中继的光纤线路&#xff0c;仅通过配线架连接。相比传统光纤&#xff0c;裸光纤提供纯粹的物理传输路径&#xff0c;无需额外网…

win2012磁盘空间不足,c盘正常,d盘无法写入,如何解决?

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

人工智能概述与入门基础简述

人工智能&#xff08;AI&#xff09;是计算机科学的一个分支&#xff0c;它致力于创建能够执行通常需要人类智能的任务的机器。这篇科普文章将全面介绍人工智能的基本概念、发展历程、主要技术、实际应用以及如何入门这一领域。 一、人工智能的定义与发展历程 人工智能的概念…

vue2实现生成二维码和复制保存图片功能(复制的同时会给图片加文字)

<template><divstyle"display: flex;justify-content: center;align-items: center;width: 100vw;height: 100vh;"><div><!-- 生成二维码按钮和输入二维码的输入框 --><input v-model"url" placeholder"输入链接" ty…

第四篇:记忆的迷宫:探索计算机存储结构的奥秘与创新

记忆的迷宫&#xff1a;探索计算机存储结构的奥秘与创新 1 引言 1.1 计算机存储系统的发展与重要性 在现代计算技术中&#xff0c;存储系统承担着非常关键的角色&#xff0c;它不仅负责信息的持久保存&#xff0c;同时确保高效的数据访问速度&#xff0c;影响着整体系统性能的…

[redis] redis为什么快

1. Redis与Memcached的区别 两者都是非关系型内存键值数据库&#xff0c;现在公司一般都是用 Redis 来实现缓存&#xff0c;而且 Redis 自身也越来越强大了&#xff01;Redis 与 Memcached 主要有以下不同&#xff1a; (1) memcached所有的值均是简单的字符串&#xff0c;red…

electron 通信总结

默认开启上下文隔离的情况下 渲染进程调用主进程方法&#xff1a; 主进程 在 main.js 中&#xff0c; 使用 ipcMain.handle&#xff0c;添加要处理的主进程方法 const { ipcMain } require("electron"); 在 electron 中创建 preload.ts 文件&#xff0c;从 ele…

getchar和putchar函数详解

getchar和putchar函数详解 1.getchar函数1.1函数概述1.2函数返回值1.3函数注意事项1.4函数的使用 2.putchar函数2.1函数概述2.2函数返回值2.3函数使用实例 1.getchar函数 1.1函数概述 从一个流中读取一个字符&#xff0c;或者从标准输入中获得一个字符 函数原型&#xff1a; …

HFSS学习-day1-T形波导的内场分析和优化设计

入门实例--T形波导的内场分析和优化设计 HFSS--此实例详细步骤1.创建项目2.设置求解类型3.设置与建模相关的一些信息设置默认的建模长度单位 4.创建T形模型的三个臂基本参数端口激励进行复制 5.创建被挖去的部分设置正确的边界条件和端口激励方式添加求解设置添加扫频项检查一下…

基于EWT联合SVD去噪

一、代码原理 &#xff08;1&#xff09;基于EWT-SVD的信号去噪算法原理 经验小波变换&#xff08;Empirical Wavelet Transform&#xff0c;EWT&#xff09;&#xff1a;EWT是一种基于信号局部特征的小波变换方法&#xff0c;能够更好地适应非线性和非平稳信号的特性。奇异值…

寻找最佳App分发平台:小猪APP分发脱颖而出

在当今移动应用市场日益饱和的环境下&#xff0c;选择一个合适的App分发平台对于开发者来说至关重要。这不仅关系到应用能否快速触达目标用户&#xff0c;还直接影响到品牌的塑造与市场份额的争夺。本文将深入探讨几大关键因素&#xff0c;帮助开发者判断哪个App分发平台最适合…