通用指令(汇编)

  • 一、数据处理指令
    • 1)数学运算
            • 数据运算指令的格式
            • 数据搬移指令
            • 立即数
            • 伪指令
            • 加法指令
            • 带进位的加法指令
            • 减法指令
            • 带借位的减法指令
            • 逆向减法指令
            • 乘法指令
            • 数据运算指令的扩展
    • 2)逻辑运算
            • 按位与指令
            • 按位或指令
            • 按位异或指令
            • 左移指令
            • 右移指令
            • 位清零指令
    • 3)比较指令
            • 怎么影响到CPSR寄存器中的状(N, Z, C, V)
            • 比较指令
            • ARM指令的条件码
  • 二、跳转指令
    • 1)跳转指令
            • 跳转指令
  • 三、Load / Srore指令
    • 1)内存访问指令
            • 写内存
            • 读内存
    • 2)ARM指令的寻址方式
            • 立即寻址
            • 寄存器寻址
            • 寄存器移位寻址
            • 寄存器间接寻址
            • 基址加变址寻址
            • 基址加变址寻址的索引方式
            • 多寄存器内存访问指令的寻址方式
    • 3)栈的种类与使用

一、数据处理指令

数据处理指令(数学运算、逻辑运算)

1)数学运算

32位处理器什么意思:单次运算数据的能力,单次最大可处理32位的数据

数据运算指令的格式

《操作码》《目标寄存器》《第一操作寄存器》《第二操作数》
操作码: 表示执行哪种操作
目标寄存器: 表示存储运算的结果
第一操作寄存器: 存储第一个参与运算的寄存器(只能是寄存器)
第二操作数: 存储第二个参与运算的数据(寄存器、立即数都可以)

数据搬移指令

MOV R1, #1
MOV R2, R1 // R2 = R1
MOV PC, #7 // 可以更改PC的值,但是系统会默认把后两位改成0,7八进制>111系统会自动改成4>100
MVN R0, #0xFF // R0 = ~0xFF R0的内容就是0xFFFFFF00

立即数

立即数的本质是包含在指令当中的数,属于指令的一部分,这条执行是一起编译成机器码的
优点:
取值的时候就可以直接读取到CPU,不用单独去内存读取,速度快
缺点:
不能是任意的32位的数字,有局限性
MOV R1, #0x12345678 //不可以执行,因为数字太大
MOV R1, #0x12 //可以执行

伪指令

MOV R1, #0xFFFFFFFF
//当执行这条指令的时候显然这个数字太大,但是可以编译成功,是系统自动会将这条指令替换成 MVN R1, #0x00000000 这样就和MOV R1, #0xFFFFFFFF 指令执行的效果一样,这样的行为前提是两条指令要达到的效果相同

加法指令

ADD R1, R2, R3 //R1 = R2+R3

带进位的加法指令

ADC R5, R2, R4 // R5 = R2 + R4 + ‘CPSR->C’

1.编程实现使用32bit的ARM处理器实现两个128位的数据的加法运算。

第一个数的bit[31:0]、bit[63:32]、bit[95:64]、bit[127:96]分别存储在R1、R2、R3、R4寄存器
第二个数的bit[31:0]、bit[63:32]、bit[95:64]、bit[127:96]分别存储在R5、R6、R7、R8寄存器
运算结果的bit[31:0]、bit[63:32]、bit[95:64]、bit[127:96]分别存储在R9、R10、R11、R12寄存器

@ 第一个数 0x00000004 00000002 FFFFFFFF 00000004
	MOV R1, #0xFFFFFFFF
	MOV R2, #0x00000002
	MOV R3, #0xFFFFFFFF
	MOV R4, #0x00000004

@ 第二个数 0x00000005 00000004 00000003 00000002
	MOV R5, #0x00000002	
	MOV R6, #0x00000003
	MOV R7, #0x00000004
	MOV R8, #0x00000005
	
@ 运算结果
	ADDS R9 , R1, R5	//加 'S' 可以影响到CPSR寄存器,高位运算时,可以看出低位有没有进位
	ADCS R10, R2, R6
	ADCS R11, R3, R7
	ADC  R12, R4, R8
减法指令

SUB R1, R2, R3 //R1 = R2-R3

带借位的减法指令

SBC R5, R2, R4 // R5 = R2 - R4 - ‘~CPSR->C’ 取反

逆向减法指令

RSB R1, R2, #3 //R1 = 3-R2

乘法指令

MUL R1, R2, R3 //R1 = R2*R3 乘法指令只能是两个寄存器执行

数据运算指令的扩展

MOV R1, R2, LSL #1 //R1 = (R2<<1)

2)逻辑运算

按位与指令

AND R1, R2, R3 //R1 = R2&R3

按位或指令

ORR R1, R2, R3 //R1 = R2 | R3

按位异或指令

EOR R1, R2, R3 //R1 = R2 ^ R3

左移指令

LSL R1, R2, R3 //R1 = R2 << R3

右移指令

LSR R1, R2, R3 //R1 = R2 >> R3

位清零指令

MOV R2, #0xFF
BIC R1, R2, #0x0F
//第二操作数的哪一位为1,就把第一寄存器中的哪一位清零,然后将结果放入目标寄存器中

3)比较指令

怎么影响到CPSR寄存器中的状(N, Z, C, V)

数据运算指令对条件位CPSR寄存器中的状(N, Z, C, V)的影响
默认情况下数据运算不会对条件位产生影响,当在指令后加后缀‘S’后可以影响
MOV R2, #3
SUBS R1, R2, #5 //将会对 N 状态位产生影响

比较指令

CMP R1, R2
本质是一条(SUBS),只是没有将运算结果放入寄存器当中,是看CSPR寄存器状态位(N, Z, C, V)

==	Z=1
!=	Z=0
<	C=0
<=	C=0 或 Z=1
>	C=1 且 Z=0 
>=	C=1
  MOV R1, #1
		  MOV R2, #2
		  CMP R1, R2
		  BEQ FUNC	
		  @ 执行逻辑:if(EQ){B FUNC}	本质:if(Z==1){B FUNC}
		  BNE FUNC	
		  @ 执行逻辑:if(NE){B FUNC}	本质:if(Z==0){B FUNC}
		  MOV R3, #3
		  MOV R4, #4
		  MOV R5, #5
  FUNC:
		  MOV R6, #6
		  MOV R7, #7

		  @ ARM指令集中大多数指令都可以带条件码后缀
		  MOV R1, #1
		  MOV R2, #2
		  CMP R1, R2
		  MOVGT R3, #3
		
@ 练习:用汇编语言实现以下逻辑
			  int R1 = 9;
			  int R2 = 15;
		  START:
			  if(R1 == R2)
			  {
			  	STOP();
			  }
			  else if(R1 > R2)
			  {			
			  	R1 = R1 - R2;
			  	goto START;
			  }
			  else
			  {
			  	R2 = R2 - R1;
			 	goto START;
			  }
		
@ 练习答案:
		  MOV R1, #9
		  MOV R2, #15
  START:
		  CMP R1,R2
		  BEQ STOP
		  SUBGT R1, R1, R2
		  SUBLT R2, R2, R1
		  B START
  STOP:				
		  B STOP

在这里插入图片描述

ARM指令的条件码

ARM指令集中大多数指令都可以带条件码后缀(如:SUBEQ)

在这里插入图片描述

二、跳转指令

1)跳转指令

跳转指令

有三种方式

第一种方法:直接去修改PC的值(不建议使用,因为需要自己计算绝对地址)

MAIN:
	MOV R1, #1
	MOV R2, #2
	MOV PC, #0x16
	MOV R3, #3
	
FUNC:
	MOV R4, #4
	MOV R5, #5
	MOV R6, #6

第二种方法:不带返回的跳转指令,本质就是将PC寄存器的值修改成跳转标号下第一条指令的地址

MAIN:
	MOV R1, #1
	MOV R2, #2
	B	FUNC
	MOV R3, #3
	
FUNC:
	MOV R4, #4
	MOV R5, #5
	MOV R6, #6

第三种方法;带返回的跳转指令,本质就是将PC寄存器的值修改成跳转标号下第一条指令的地址,同时将跳转指令的下一条指令的地址存储到LR

MAIN:
	MOV R1, #1
	MOV R2, #2
	BL	FUNC
	MOV R3, #3
	
FUNC:
	MOV R4, #4
	MOV R5, #5
	MOV R6, #6
	MOV PC, LR

三、Load / Srore指令

Load / Srore指令(访问(读写)内存)

1)内存访问指令

Load/Srore指令:访问(读写)内存 当LD开头的指令 内存读数据到CPU 当ST开头的指令 把CPU中的数据存到内存当中

写内存
	@ MOV R1, #0xFFFFFFF1
	@ MOV R2, #0x40000000
	@ STR R1, [R2]		默认是写入一个字(四个字节)的数据
	@ STRB R1, [R2]  内存中写入'B'一个字节的数据'F1'
	@ STRH R1, [R2]  内存中写入'H'两个字节的数据'FFF1'
	@ R2->0x40000000内存空间 = R1的数据
读内存
	@ MOV R1, #0xFFFFFFF1
	@ MOV R2, #0x40000000
	@ LDR R3, [R2]	R3 = 默认内存读出一个字(四个字节)的数据
	@ LDRB R3, [R2]	R3 = 内存读出一个字节的数据
	@ LDRH R3, [R2]	R3 = 内存读出两个字节的数据
	@ R3 = R2->0x40000000内存空间的数据

2)ARM指令的寻址方式

寻址方式就是CPU去寻找操作数的方式

立即寻址

@ MOV R1, #1
@ ADD R1, R2, #1

寄存器寻址

@ ADD R1, R2, R3

寄存器移位寻址

@ MOV R1, R2, LSL #1

寄存器间接寻址

@ STR R1, [R2]

基址加变址寻址
		@ MOV R1, #0xFFFFFFFF
		@ MOV R2, #0x40000000
		@ MOV R3, #4
		@ STR R1, [R2,R3]
		@ 将R1寄存器中的数据写入到R2+R3指向的内存空间
		@ STR R1, [R2,R3,LSL #1]
		@ 将R1寄存器中的数据写入到R2+(R3<<1)指向的内存空间
基址加变址寻址的索引方式

前索引

		@ MOV R1, #0xFFFFFFFF
		@ MOV R2, #0x40000000
		@ STR R1, [R2,#8]
		@ 将R1寄存器中的数据写入到R2+8指向的内存空间
		@ LDR R2, [R2,#8]
		@ 将R2+8指向的内存空间的数据写入到R2寄存器中

后索引

		@ MOV R1, #0xFFFFFFFF
		@ MOV R2, #0x40000000
		@ STR R1, [R2],#8
		@ 将R1寄存器中的数据写入到R2指向的内存空间,然后R2自增8
		@ LDR R1, [R2],#8
		@ 将R2+8指向的内存空间的数据写入到R2寄存器中,然后R1自增8

自动索引

		@ MOV R1, #0xFFFFFFFF
		@ MOV R2, #0x40000000
		@ STR R1, [R2,#8]!
		@ 将R1寄存器中的数据写入到R2+8指向的内存空间,然后R2自增8
		@ LDR R6, [R2,#8]!
		@ 将R2+8指向的内存空间的数据写入到R6寄存器中,然后R6自增8
多寄存器内存访问指令的寻址方式

在这里插入图片描述

		@ MOV R1, #1
		@ MOV R2, #2
		@ MOV R3, #3
		@ MOV R4, #4
		@ MOV R11,#0x40000020
		@ STMIA R11!,{R1-R4}
		@ 先存储数据,后增长地址
		@ STMIB R11!,{R1-R4}
		@ 先增长地址,后存储数据
		@ STMDA R11!,{R1-R4}
		@ 先存储数据,后递减地址
		@ STMDB R11!,{R1-R4}
		@ 先递减地址,后存储数据

3)栈的种类与使用

栈的概念

栈的本质就是一段内存,程序运行时用于保存一些临时数据如局部变量、函数的参数、返回值、以及程序跳转时需要保护的寄存器等

栈的分类

在这里插入图片描述
增栈:压栈时栈指针越来越大,出栈时栈指针越来越小
减栈:压栈时栈指针越来越大,出栈时栈指针越来越小
满栈:栈指针指向最后一次压入到栈中的数据,压栈时需要先移动栈指针到相邻位置然后再压栈
空栈:栈指针指向最后一次压入到栈中的数据的相邻位置,压栈时可直接压栈,之后需要将栈指针移动到相邻位置

栈分为空增(EA)、空减(ED)、满增(FA)、满减(FD)四种
ARM处理器一般使用满减栈

		MOV R1, #1
		MOV R2, #2
		MOV R3, #3
		MOV R4, #4
		MOV R11,#0x40000020
		STMFD R11!,{R1-R4}
		LDMFD R11!,{R6-R9}
		
@ 结果 R6 = 1, R7 = 2, R8 = 3, R9 = 4

栈的应用举例

1.叶子函数的调用过程举例

@ 初始化栈指针
		MOV SP, #0x40000020
MIAN:
		MOV R1, #3
		MOV R2, #5
		BL  FUNC
		ADD R3, R1, R2
		B STOP
		
FUNC:
		@ 压栈保护现场
		STMFD SP!, {R1,R2}
		MOV R1, #10
		MOV R2, #20
		SUB R3, R2, R1
		@ 出栈恢复现场
		LDMFD SP!, {R1,R2}
		MOV PC, LR

2.非叶子函数的调用过程举例

		MOV SP, #0x40000020
MIAN:
		MOV R1, #3
		MOV R2, #5
		BL  FUNC1
		ADD R3, R1, R2
		B STOP		
FUNC1:
		STMFD SP!, {R1,R2,LR}
		MOV R1, #10
		MOV R2, #20
		BL  FUNC2
		SUB R3, R2, R1
		LDMFD SP!, {R1,R2,LR}
		MOV PC, LR
FUNC2:
		STMFD SP!, {R1,R2}
		MOV R1, #7
		MOV R2, #8
		MUL R3, R1, R2
		LDMFD SP!, {R1,R2}
		MOV PC, LR
		
		@ 执行叶子函数时不需要对LR压栈保护,执行非叶子函数时需要对LR压栈保护

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59570.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【枚举+trie+dfs】CF514 C

Problem - 514C - Codeforces 题意&#xff1a; 思路&#xff1a; 其实是trie上dfs的板题 先把字符串插入到字典树中 对于每次询问&#xff0c;都去字典树上dfs 注意到字符集只有3&#xff0c;因此如果发现有不同的字符&#xff0c;去枚举新的字符 Code&#xff1a; #in…

学习单片机的秘诀:实践与坚持

在学习单片机时&#xff0c;将实践与学习结合起来是一个很好的方法。不要一上来就死磕指令和名词&#xff0c;而是边学边做实验&#xff0c;循序渐进地理解和应用指令。通过实验&#xff0c;你能亲身感受到指令的控制效果&#xff0c;增强对单片机的理解和兴趣。 学习单片机不…

【iOS】App仿写--天气预报

文章目录 前言一、首页二、搜索界面三、添加界面四、浏览界面总结 前言 最近完成了暑假的最后一个任务——天气预报&#xff0c;特此记录博客总结。根据iPhone中天气App的功能大致可以将仿写的App分为四个界面——首页&#xff0c;搜索界面&#xff0c;添加界面&#xff0c;浏…

dflow工作流使用1——架构和基本概念

对于容器技术、工作流等概念完全不懂的情况下理解dflow的工作方式会很吃力&#xff0c;这里记录一下个人理解。 dflow涉及的基本概念 工作流的概念很好理解&#xff0c;即某个项目可以分为多个步骤&#xff0c;每个步骤可以实现独立运行&#xff0c;只保留输入输出接口&#x…

WebGL Shader着色器GLSL语言

在2D绘图中的坐标系统&#xff0c;默认情况下是与窗口坐标系统相同&#xff0c;它以canvas的左上角为坐标原点&#xff0c;沿X轴向右为正值&#xff0c;沿Y轴向下为正值。其中canvas坐标的单位都是’px’。 WebGL使用的是正交右手坐标系&#xff0c;且每个方向都有可使用的值的…

c语言野指针int*p、空指针int*p = NULL、万能指针void* p

1、野指针&#xff0c;既没有初始化的指针&#xff0c;//如果没有给指针初始化&#xff0c;则指针p的内容为随机地址&#xff0c;会随机指向&#xff0c;故成为野指针&#xff0c;不可以操作野指针 #include "stdio.h" #include <stdlib.h>int main() {//1、野…

ORACLE常用基础

. 1.oracle开机启动流程 su - oracle lsnrctl start lsnrctl status sqlplus / as sysdba startup 2、如何查看数据库版本 select * from v$version; 3.如何查看用户从那个设备连接的数据库 SELECT DISTINCT machine , terminal FROM V$SESSION; 4.如何查看表结构 selec…

FANUC机器人SRVO-300机械手断裂故障报警原因分析及处理办法

FANUC机器人SRVO-300机械手断裂故障报警原因分析及处理办法 首先,我们查看报警说明书上的介绍: 总结:即在机械手断裂设置为无效时,机器人检测出了机械手断裂信号(不该有的信号,现在检测到了,所以报警) 使机械手断裂设定为无效/有效的具体方法:  按下示教器的MENU菜单…

Vue前端框架入门

文章目录 Vue快速入门Vue指令生命周期 Vue 经过一小段时间学习 我认为vue就是在原js上进行的一个加强 简化JS中的DOM操作 vue是分两个层的 一个叫做视图层(View)&#xff0c;你可以理解为展现出来的前端页面 一个叫数据模型层(Model),包含数据和一些数据的处理方法 MVVM就是实…

数据结构10 -查找_树表查找

创建二叉搜索树 二叉搜索树 二叉搜索树是有数值的了&#xff0c;二叉搜索树是一个有序树。 若它的左子树不空&#xff0c;则左子树上所有结点的值均小于它的根结点的值&#xff1b; 若它的右子树不空&#xff0c;则右子树上所有结点的值均大于它的根结点的值&#xff1b; 它…

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】 1 实现\封装Message模块 zinx/ziface/imessage.go package zifacetype IMessage interface {GetMsdId() uint32GetMsgLen() uint32GetMsgData() []byteSetMsgId(uint32)SetData([]byte)SetData…

组合总和——力扣39

文章目录 题目描述回溯 题目描述 回溯 class Solution { public:vector<vector<int>> res;vector<int> seq; void dfs(vector<int>& nums, int pos, int target){if(target0){res.emplace_back(seq);return;}if(posnums.size()){return;}//直接跳过…

2023上半年手机及数码行业分析报告(京东销售数据分析)

2023年上半年&#xff0c;手机市场迎来复苏&#xff0c;同环比来看&#xff0c;销量销额纷纷上涨。 而数码市场中&#xff0c;各个热门品类表现不一。微单相机及智能手表同比去年呈现增长态势&#xff0c;而笔记本电脑市场则出现下滑。 基于此现状&#xff0c;鲸参谋发布了20…

Ubuntu 虚拟机和主机无法互相复制文字和文件

1.在虚拟机列表中&#xff0c;右键查看是否有安装VMware Tools&#xff0c;如果没有安装点击安装&#xff0c;如果已经安装了&#xff0c;上面显示重现安装VMware Tools&#xff0c;并且为灰色&#xff0c;如图&#xff1a; 2.如果没有安装点击安装&#xff0c;如果已经安装&am…

【知识产权】专利的弊端

接上篇【知识产权】著作权的作用_qilei2010的博客-CSDN博客。 ​ 1 专利的分类 首先,专利分为:发明专利、实用新型专利、外观设计专利。这里要说明的是专利的不同种类在不同的国家都是有不同规定的,并不是所有国家和地区都是分成这三类。 >国家法律法规数据库 >中华…

untiy代码打压缩包,可设置密码

1、简单介绍&#xff1a; 用的是一个插件SharpZipLib&#xff0c;在vs的Nuget下载&#xff0c;也可以去github下载https://github.com/icsharpcode/SharpZipLib 用这个最主要的是因为&#xff0c;这个不用请求windows的文件读写权限&#xff0c;关于这个权限我搞了好久&#…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验四 蜂鸣器

目录 前言 一、原理图及知识点介绍 1.1、蜂鸣器原理图&#xff1a; 二、代码分析 前言 第一个实验:51单片机&#xff08;普中HC6800-EM3 V3.0&#xff09;实验例程软件分析 实验一 点亮第一个LED_ManGo CHEN的博客-CSDN博客 第二个实验:51单片机&#xff08;普中HC6800-EM…

快速文件传输常见问题

我们所处的世界充斥着各种信息&#xff0c;能够迅速获得正确的数据往往是企业成功的关键因素。将文件从A点移动到B点需要考虑很多问题&#xff0c;但是当涉及需要在最短时间内送达全球各地收件人的大型关键任务文件时&#xff0c;就不能再使用Dropbox和 Google Drive 等方案了。…

安全学习DAY13_WEB应用源码获取

信息打点-WEB应用-源码获取 文章目录 信息打点-WEB应用-源码获取小节概述-思维导图资产架构-源码获取&#xff08;后端&#xff09;后端-开源后端-闭源-源码泄露源码泄露原因源码泄露方式集合网站备份压缩包git&#xff0c;svn源码泄露DS_Store文件泄露composer.json 泄露资源搜…

C语言预备知识

安装Visual studio 官方网址 https://visualstudio.microsoft.com/zh-hans/ 选择第一个社区版本&#xff08;免费&#xff09; 下载完成后打开安装包 安装完成后会自动打开程序选择c项目然后安装即可&#xff08;c兼容c&#xff09; 安装完成后启动程序注意这里需要注册也可…