Python语言在地球科学中地理、气象、气候变化、水文、生态、传感器等数据可视化到常见数据分析方法的使用

Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。除了Python标准库,几乎所有行业领域都有相应的Python软件库,随着NumPy、SciPy、Matplotlib和Pandas等众多Python应用程序库的开发,Python在科学和工程领域地位日益重要,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面的优异性能使得Python在地球科学中地理、气象、气候变化、水文、生态、传感器等领域的学术研究和工程项目中得到广泛应用并高效解决各种数据分析问题,可以预见未来Python将成为科学和工程领域的主流程序设计语言。

1、提供虚拟机(Virtual Box)文件(预装好Anaconda环境,可直接使用)
2、提供原始数据和中间临时文件

专题一 Python重点工具讲解【打好基础】

Numpy:科学计算
Scipy:科学计算
Sklearn:机器学习
Matplotlib:可视化
Cartopy:地理数据可视化

GeoPandas:地理数据分析

专题二 常见地球科学数据讲解【掌握数据的特点】

1、站点数据
GSOD
GHCN
ISMN:国际土壤湿度测量网络数据

FLUXNET:全球通量观测网络数据

2、格点观测数据
CRU

CN05.1
OISST、HadSST

3、再分析
ERA5
GLDAS

4、遥感数据
GLEAM

Landsat

MODIS

TRMM

SMAP:土壤湿度主动被动遥感数据

专题三 使用Xarray处理netCDF和Geotiff数据

Xarray 读取&写入 netCDF文件
Groupby & resample 对时间、空间信息进行操作
Rasterio & rioxarray

专题四 使用Pysat进行大空间分析

1. 空间自相关分析
分析干旱事件发生的空间聚集性

2. 空间回归模型
建模气温与地形因素的空间关系
GWR模型评估地形对降水分布的局部影响 

3. 空间点模式分析
探测极端天气事件的热点区域

4. 时空数据分析
评估城市热岛效应的时空演化

专题五 使用Dask进行大数据并行计算

使用Dask进行大数据并行计算
Arrays、DataFrames
无结构数据的并行处理
延迟计算
案例一:并行处理长时间序列的TRMM降水数据,识别极端降水事件的时空分布特征
案例二:利用Dask并行计算,快速监测全球范围内干旱的发生、发展和持续时间

专题六 使用Pandas分析时间序列数据-1

案例一:时间序列填补

案例二:极端风速重现期分析

案例三:台风个数统计

专题七 使用Pandas分析时间序列数据-2

1、环流指数与温度、降水变化的关联性
各环流指数对全球及区域温度变化的影响
环流指数与极端高温/低温事件的联系
环流指数与干旱/洪水事件的关联
环流指数对季风系统的影响

2、空间插值
使用Kriging进行站点数据插值 
使用IDW插值生成高分辨率气温场

3、缺测数据插补
针对地面站点数据中的缺失值进行插补
利用机器学习算法插补遥感数据中的缺测像元
结合空间插值和时间插值等多种方法提高数据质量

专题八 使用Python处理遥感数据1以Landsat数据为例

1、大数据的可视化
GB级数据可视化

2、植被指数计算

3、裁剪区域
使用mask掩膜文件裁剪
使用shapefile文件裁剪

专题九 使用Python处理遥感数据2—以MODIS数据为例

1、预备工作:
Python读取HDF4-EOS数据
使用GDAL库预处理
转投影为wgs84+lonlat
拼接多景影像

2、案例一:土地利用分析(MOD12C1)
2000-2020年青藏高原土地利用分析
分析不同土地利用分类上气温和降水的变化

3、案例二:生态系统生产力分析(MOD17A2)
青藏高原草场上土地利用GPP变化
分析草场GPP与降水之间关系(ERA5再分析数据)

4、案例三:分析积雪覆盖时间(MOD10A2)
2000-2020年间青藏高原积雪时间统计
分析祁连山不同高程带积雪时间统计(DEM:GTOP30S)

5、案例四:积雪与生产力之间的关系(MOD10A2和MOD17A2)
分析新疆北疆积雪覆盖时间与春季GPP的变化

专题十 使用Python处理站点数据以GSOD和气象共享网数据为例

1、数据的读取
读取美国NOAA的GSOD日值数据
读取气象共享网日值数据

2、数据清洗:
数据整理
异常值检测
阈值法
模型法
孤立森林

3、多时间尺度的统计:
年尺度统计
季尺度统计

4、站点插值:(随机森林树)
利用高程、经纬度插值气温数据

专题十一 使用Python处理遥感水文数据以TRMM遥感降水数据和GLEAM数据等为例

案例一:空间降尺度
使用NDVI、DEM和机器学习算法对TRMM降水数据降尺度

案例二:分析蒸散数据的年际变化
读取GLEAM数据,并分析蒸散发的年际变化
比较MODIS ET产品与GLEAM的差异

案例三:使用随机森林算法估算地表蒸散发
GLEAM和ERA5数据建立机器学习估算模型
在区域尺度上进行长时间序列模拟

案例四:比较多套土壤湿度产品
比较GLDAS、GLEAM和CCI SM

案例五:分析降水~蒸散发-土壤湿度关系
分析降水~蒸散发-土壤湿度的年际变化

专题十二 使用Python处理遥感和模式数据以PKU GIMMS NDVI遥感降水数据和GLDAS数据为例

案例一:结合GIMMS NDVI和陆面模式数据分析干旱影响
获取陆面模式模拟的土壤湿度数据
建立植被生产力与干旱的响应关系
评估不同地区的干旱敏感性

案例二:青藏高原地区干旱对高寒草地生态系统的影响
基于NDVI识别青藏高原历史干旱年份
结合GLDAS模拟的土壤温湿度等数据,分析干旱对植被的影响机制

专题十三 使用Python处理气候变化数据1观测数据

案例一:百年气温趋势:CRU数据

案例二:百年海温趋势:HadSST

案例三:再分析数据处理

ERA5数据气温评估

专题十四 使用Python进行气候诊断分析

在GHCN站点数据基础上
使用Mann-Kendall趋势检验
使用Mann-Kendall突变分析
和Sen's slope估计气候变化趋势
使用小波分析等分析周期

专题十五 使用Python处理气候变化数据2 以CMIP6数据为例

降尺度
Delta方法
百分位校正方法

案例一:计算极端气候指数
案例二:未来气候变化背景下中国地区GPP变化(CMIP6+MOD17+机器学习)
案例三:未来气候变化背景下中国地区土地利用变化

专题十六 使用Python对WRF模式数据后处理

案例一:空间坐标重采样
案例二:风速垂直高度插值
获取风机70和100m高度的风速和风向

专题十七 使用Python运行生态模型 以CN05.1数据和Biome-BGC生态模型为例

1、模型讲解
2、气象数据的准备
3、控制文件生成
4、模式的运行
Muliprocesing 并行运行
5、模式后处理
结果统计
结果可视化(NPP)
注:请提前自备电脑及安装所需软件


更多应用

ArcGIS+ChatGPT双剑合璧:从数据读取到空间分析,一站式掌握GIS与AI融合的前沿科技!-CSDN博客文章浏览阅读908次,点赞18次,收藏10次。结合ArcGIS和GPT的优势,本教程将重点讲解AI大模型应用、ArcGIS工作流程及功能、Prompt使用技巧、AI助力工作流程、AI助力数据读取与处理、AI助力空间分析、AI助力遥感分析、AI助力二次开发、AI助力科研绘图以及ArcGIS与AI的综合应用。https://blog.csdn.net/WangYan2022/article/details/138335545?spm=1001.2014.3001.5502ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写-CSDN博客文章浏览阅读865次,点赞25次,收藏26次。掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。https://blog.csdn.net/WangYan2022/article/details/137681275?spm=1001.2014.3001.5502AI大模型与ChatGPT的碰撞,在GIS、生物、地球、农业、气象、生态、环境科学领域案例应用-CSDN博客文章浏览阅读833次,点赞17次,收藏19次。AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、机器/深度学习、大尺度模拟、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。https://blog.csdn.net/WangYan2022/article/details/137669575?spm=1001.2014.3001.5502★点 击 关 注,获取海量教程和资源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/595423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习之视觉特征提取器——AlexNet

AlexNet 参考资料: (1)ImageNet十年历任霸主之AlexNet - 知乎 (zhihu.com) (2)AlexNet - Wikipedia 引入 AlexNet在2012年以第一名在Top-1分类精度霸榜ImageNet,并超过第二名近10个百分点,…

On Hold 频发!又3本期刊被标记为On Hold ,大家谨慎投递!

【SciencePub学术】On Hold 频发!小编在查阅资料的时候发现又有3本期刊被标记为On Hold 了,今天小编给大家详细介绍一下这3本期刊。 来源:科睿唯安官网 Results in Physics 1 期刊概况 【期刊简介】IF:5.3,JCR1区&am…

RockChip Android13 NFC SL6320移植

环境:RK3568 Android13 一:驱动移植 1、驱动 将SL6320驱动代码拷贝至kernel-5.10/drivers/misc/sl6320/ 特殊说明:勿将驱动代码放置于kernel-5.10/drivers/nfc/目录下,会导致sl6320驱动生成设备节点时因/dev/nfc节点以创建而加载失败。 2、DTS 本次硬件设计电路走I2C协…

获取京东商品详情,API返回值说明全攻略

京东商品详情API是开发者获取京东平台上商品详细信息的重要工具。通过调用API并解析返回的响应数据,您可以快速获取商品的各项属性,如商品ID、标题、价格、图片等。下面,我们将为您详细介绍京东商品详情API的返回值说明,帮助您更好…

Spring - 8 ( 10000 字 Spring 入门级教程 )

一: MyBatis 1.1 引入 MyBatis 我们学习 MySQL 数据库时,已经学习了 JDBC 来操作数据库, 但是 JDBC 操作太复杂了. 我们先来回顾⼀下 JDBC 的操作流程: 创建数据库连接池 DataSource通过 DataSource 获取数据库连接 Connection编写要执行带 ? 占位符…

三岁孩童被家养大型犬咬伤 额部撕脱伤达10公分

近期,一名被家养大型犬咬伤了面部的3岁小朋友,在被家人紧急送来西安国际医学中心医院,通过24小时急诊门诊简单救治后,转至整形外科,由主治医师李世龙为他实施了清创及缝合手术。 “患者额部撕脱伤面积约为10公分&…

什么是高级持续威胁(APT)

高级持续性威胁(Advanced Persistent Threat,APT),又叫高级长期威胁,是一种复杂的、持续的网络攻击,包含三个要素:高级、长期、威胁。 【高级】是指执行APT攻击需要比传统攻击更高的定制程度和…

【教程】极简Python接入免费语音识别API

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,请不吝给个[点赞、收藏、关注]哦~ 安装库: pip install SpeechRecognition 使用方法: import speech_recognition as srr sr.Recognizer() harvard sr…

省公派出国|社科类普通高校教师限期内赴英国访学交流

在国外访问学者申请中,人文社科类相对难度更大,尤其是英语语言学,作为非母语研究并不被国外高校看重。经过努力,最终我们帮助Z老师申请到英国坎特伯雷基督教会大学的访学职位,并在限期内出国。 Z老师背景: …

如何在 Windows 11 上检查和显示 CPU 温度

1.为什么需要监控 CPU 温度? CPU 是您计算机的核心,是从后台运行整个节目的木偶大师,接收指令并处理保持整个 shindig 运行所需的处理能力。并且需要定期监测其内部温度,以确保节目不会着火。高于平均水平的热量总是会导致性能急…

jenkins常用插件之Filesystem Trigger

安装插件 Filesystem Trigger 项目配置 验证 根据上述配置,当1.txt文件发生变化时,jenkins每分钟会进行检测,检测到后即进行任务构建,后续的具体操作可自行配置

css响应式布局左、右上、右中布局

一、布局效果 二、布局代码 <div class"parent"><div class"left">菜单</div><div class"right"><div class"right-top">顶部导航</div><div class"right-content"></div>…

SpringBoot集成阿里云短信验证码服务

一&#xff1a;前言 最近在项目开发过程中&#xff0c;需要去写一个发送手机短信验证码的功能。在网上查了一下&#xff0c;有很多服务器可供选择&#xff0c;本文的话是基于阿里云服务的短信验证码功能实现。 关于注册和开通服务这些需要操作的&#xff0c;请各位小伙伴参考官…

Vue、React实现excel导出功能(三种实现方式保姆级讲解)

第一种&#xff1a;后端返回文件流&#xff0c;前端转换并导出&#xff08;常用&#xff0c;通常公司都是用这种方式&#xff09; 第二种&#xff1a;纯后端导出&#xff08;需要了解&#xff09; 第三种&#xff1a;纯前端导出&#xff08;不建议使用&#xff0c;数据处理放…

使用Ruoyi的定时任务组件结合XxlCrawler进行数据增量同步实战-以中国地震台网为例

目录 前言 一、数据增量更新机制 1、全量更新机制 2、增量更新机制 二、功能时序图设计 1、原始请求分析 2、业务时序图 三、后台定时任务的设计与实现 四、Ruoyi自动任务配置 1、Ruoyi自动任务配置 2、任务调度 总结 前言 在之前的相关文章中&#xff0c;发表文章列…

clang:在 Win10 上编译 MIDI 音乐程序(一)

先从 Microsoft C Build Tools - Visual Studio 下载 1.73GB 安装 "Microsoft C Build Tools“ 访问 Swift.org - Download Swift 找到 Windows 10&#xff1a;x86_64 下载 swift-5.10-RELEASE-windows10.exe 大约490MB 建议安装在 D:\Swift\ &#xff0c;安装后大约占…

02 Activiti 7:环境

02 Activiti 7&#xff1a;环境 1. 开发环境2. 流程设计器2.1. 在线安装2.2. 离线安装2.3. 中文乱码 3. 数据库 1. 开发环境 这是我本地开发环境 软件版本Jdk17Mysql8.0.36tomcat10.1.23IDEA2024.1Activiti7.0 2. 流程设计器 2.1. 在线安装 在 Plugins 搜索 activiti &…

【数据结构】初识数据结构

引入&#xff1a; 哈喽大家好&#xff0c;我是野生的编程萌新&#xff0c;首先感谢大家的观看。数据结构的学习者大多有这样的想法&#xff1a;数据结构很重要&#xff0c;一定要学好&#xff0c;但数据结构比较抽象&#xff0c;有些算法理解起来很困难&#xff0c;学的很累。我…

图题目:最大网络秩

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;最大网络秩 出处&#xff1a;1615. 最大网络秩 难度 4 级 题目描述 要求 由 n \texttt{n} n 座城市和一些连接这些城市的道路 roads \texttt{ro…

测径仪视窗镜片的维护和保养步骤

关键字:测径仪镜片,测径仪保养,测径仪维护,视窗镜片维护,视窗镜片擦拭保养,视窗镜片的检查, 视窗镜片定期保养 视窗镜片是保护光学镜头免受污染和损伤的光学平镜片&#xff0c;它的污染和破损会直接影响光学系统的测量结果。 视窗镜片一般在受到轻微污染&#xff08;指镜片上…