Opencv-C++笔记 (16) : 几何变换 (图像的翻转(镜像),平移,旋转,仿射,透视变换)

文章目录

  • 一、图像平移
  • 二、图像旋转
    • 2.1 求旋转矩阵
    • 2.2 求旋转后图像的尺寸
    • 2.3手工实现图像旋转
    • 2.4 opencv函数实现图像旋转
  • 三、图像翻转
    • 3.1左右翻转
    • 3.2、上下翻转
    • 3.3 上下颠倒,左右相反
  • 4、错切变换
    • 4.1 实现错切变换
  • 5、仿射变换
    • 5.1 求解仿射变换
    • 5.2 OpenCV实现仿射变换
    • 5.3手动
  • 6、图像缩放
    • 6.1 实现图像缩放
  • 7.透视变换
    • 7.2 实现透视变换

一、图像平移

在这里插入图片描述

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include<ctime>
#include<iostream>

using namespace cv;
using namespace std;


//平移操作,图像大小不变
Mat imageTranslation1(Mat& srcImage, int x0ffset, int y0ffset)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size(), srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{

			int x = j - x0ffset;
			int y = i - y0ffset;
			//边界判断
			if (x >= 0 && y >= 0 && x < nCols && y < nRows)
			{
				resultImage.at<Vec3b>(i, j) = srcImage.ptr<Vec3b>(y)[x];
			}
		}
	}
	return resultImage;
}
//平移操作,图形大小改变
Mat imageTranslation2(Mat& srcImage, int x0ffset, int y0ffset)
{
	//设置平移尺寸
	int nRows = srcImage.rows + abs(y0ffset);
	int nCols = srcImage.cols + abs(x0ffset);
	Mat resultImage(nRows, nCols, srcImage.type());
	//图像遍历
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{
			int x = j - x0ffset;
			int y = i - y0ffset;
			//边界判断
			if (x >= 0 && y >= 0 && x < nCols && y < nRows)
			{
				resultImage.at<Vec3b>(i, j) = srcImage.ptr<Vec3b>(y)[x];
			}
		}
	}
	return resultImage;
}
Mat img_shift(Mat img, int d)
{
	Mat tmp;

	if (d > 0)
	{
		//右移
		Mat q0(img, Rect(0, 0, img.cols - d, img.rows));
		Mat q1(img, Rect(img.cols - d, 0, d, img.rows));

		q0.copyTo(tmp);

		Mat q2(img, Rect(0, 0, d, img.rows));
		Mat q3(img, Rect(d, 0, img.cols - d, img.rows));

		q1.copyTo(q2);
		tmp.copyTo(q3);
	}
	else
	{
		//左移
		d = -d;

		Mat q0(img, Rect(0, 0, d, img.rows));
		Mat q1(img, Rect(d, 0, img.cols - d, img.rows));

		q0.copyTo(tmp);

		Mat q2(img, Rect(0, 0, img.cols - d, img.rows));
		Mat q3(img, Rect(img.cols - d, 0, d, img.rows));

		q1.copyTo(q2);
		tmp.copyTo(q3);

	}


	return img;

}

int main()
{
	//读取图像
	Mat srcImage = imread("E:\\Lena.jpg");
	if (srcImage.empty())
	{
		return -1;
	}

	//显示原图像
	imshow("原图像", srcImage);
	int x0ffset = 50;
	int y0ffset = 80;
	Mat resultImage1 = imageTranslation1(srcImage, x0ffset, y0ffset);
	imshow("resultImage1", resultImage1);
	Mat resultImage2 = imageTranslation2(srcImage, x0ffset, y0ffset);
	imshow("resultImage2", resultImage2);
	x0ffset = -50;
	y0ffset = -80;
	Mat resultImage3 = imageTranslation1(srcImage, x0ffset, y0ffset);
	cv::imshow("resultImage3", resultImage3);
	Mat resultImage4 = img_shift(srcImage, 60);
	imshow("resultImage4", resultImage4);
	cv::waitKey(0);
	return 0;
}
//第二种图像平移
//将图像扩展两倍的宽 并对其进行截取达到是图像平移
Mat img_shift1(Mat img, int d)
{

	Mat src(img.rows, img.cols * 2, img.type());

	//水平平移 则在水平方向上对其复制粘贴
	img.copyTo(src({ 0,0,img.cols,img.rows }));
	img.copyTo(src({ img.cols,0,img.cols,img.rows }));
	imshow("src", src);

	if (d > 0)
	{
		Mat tmp(src, Rect(img.cols - d, 0, img.cols, img.rows));
		tmp.copyTo(img);
	}
	else
	{
		Mat tmp(src, Rect(-d, 0, img.cols, img.rows));
		tmp.copyTo(img);
	}

	return img;
}

在这里插入图片描述

uchar pixel_value = Mat.ptr<uchar>(row)[col]; //获取某个像素值(row行col列)
 Mat.ptr<uchar>(row);  //获取某行的首地址

二、图像旋转

图像旋转是指图像按照某个位置转动一定的角度的过程,旋转中图像仍保持着原始尺寸。图像旋转后图像水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。

2.1 求旋转矩阵

假设有一个点:P(x,y),它在绕原点 O(0,0) 旋转 β 后,被转换成 P’(x’,y’),另外,点 P 到原点 O 的距离为 r:
在这里插入图片描述
在这里插入图片描述

假设 P(x,y) 点与 X 轴成一个角α。在这里,公式如下:

x = r cos(α)
y = r sin(α)
同理,P’(x’,y’) 点将与 X 轴形成一个角,α + β。因此,公式如下:

x’ = r cos(α+β)
y’ = r sin(α+β)
接下来,将使用下面的三角恒等式:

cos(α+β) = cosαcosβ – sinαsinβ
在这里插入图片描述
在这里插入图片描述
现在,已经得到了前面的方程,可以把任何点变换成一个新的点,只要它旋转一个给定的角度。同样的方程可以应用于图像中的每个像素,从而得到旋转后的图像。但是,即使图像被旋转了,它仍然在一个矩形内。这意味着新图像的尺寸可以改变,而在平移中,输出图像和输入图像的尺寸保持不变。

2.2 求旋转后图像的尺寸

这里将考虑两种情况。

第一种情况是保持输出图像的尺寸与输入图像的尺寸相同。
第二种情况是修改输出图像的尺寸。
通过下面的图表来理解它们之间的区别。

将图像以逆时针方向围绕图像中心旋转一个角度 ϴ ——

左半部分显示的是即使是在旋转之后,图像的尺寸保持不变的情况
而在右半部分,缩放尺寸以覆盖整个旋转后的图像。
可以看到两种情况下得到的结果的差异。
下图中 L 和 H 为原始图像的尺寸,L' 和 H' 为旋转后的尺寸。

在这里插入图片描述
上图中,旋转后图像的大小,取决于图像的尺寸是保持不变还是在旋转时进行了修改。对于想要保持图像大小与初始图像大小相同的情况,只需要剔除额外的区域。如果不想保持相同的尺寸,需要学习如何获得旋转后的图像的尺寸。
在这里插入图片描述
在这里插入图片描述

2.3手工实现图像旋转

Mat imgRotate(Mat matSrc, float angle, bool direction)
{
	float theta = angle * CV_PI / 180.0;
	int nRowsSrc = matSrc.rows;
	int nColsSrc = matSrc.cols;
	// 如果是顺时针旋转
	if (!direction)
		theta = 2 * CV_PI - theta;
	// 全部以逆时针旋转来计算
	// 逆时针旋转矩阵
	float matRotate[3][3]{
		{std::cos(theta), -std::sin(theta), 0},
		{std::sin(theta), std::cos(theta), 0 },
		{0, 0, 1}
	};
	float pt[3][2]{
		{ 0, nRowsSrc },
		{nColsSrc, nRowsSrc},
		{nColsSrc, 0}
	};
	for (int i = 0; i < 3; i++)
	{
		float x = pt[i][0] * matRotate[0][0] + pt[i][1] * matRotate[1][0];
		float y = pt[i][0] * matRotate[0][1] + pt[i][1] * matRotate[1][1];
		pt[i][0] = x;
		pt[i][1] = y;
	}
	// 计算出旋转后图像的极值点和尺寸
	float fMin_x = min(min(min(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
	float fMin_y = min(min(min(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
	float fMax_x = max(max(max(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
	float fMax_y = max(max(max(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
	int nRows = cvRound(fMax_y - fMin_y + 0.5) + 1;
	int nCols = cvRound(fMax_x - fMin_x + 0.5) + 1;
	int nMin_x = cvRound(fMin_x + 0.5);
	int nMin_y = cvRound(fMin_y + 0.5);
	// 拷贝输出图像
	Mat matRet(nRows, nCols, matSrc.type(), Scalar(0));
	for (int j = 0; j < nRows; j++)
	{
		for (int i = 0; i < nCols; i++)
		{
			// 计算出输出图像在原图像中的对应点的坐标,然后复制该坐标的灰度值
			// 因为是逆时针转换,所以这里映射到原图像的时候可以看成是,输出图像
			// 到顺时针旋转到原图像的,而顺时针旋转矩阵刚好是逆时针旋转矩阵的转置
			// 同时还要考虑到要把旋转后的图像的左上角移动到坐标原点。
			int x = (i + nMin_x) * matRotate[0][0] + (j + nMin_y) * matRotate[0][1];
			int y = (i + nMin_x) * matRotate[1][0] + (j + nMin_y) * matRotate[1][1];
			if (x >= 0 && x < nColsSrc && y >= 0 && y < nRowsSrc)
			{
				matRet.at<Vec3b>(j, i) = matSrc.at<Vec3b>(y, x);
			}
		}
	}
	return matRet;
}
int main()
{
	Mat matSrc = imread("E:\\Lena.jpg");
	if (matSrc.empty())
		return 1;
	float angle = 30;
	Mat matRet = imgRotate(matSrc, angle, true);
	imshow("src", matSrc);
	imshow("rotate", matRet);
	// 保存图像
	imwrite("rotate_panda.jpg", matRet);

	waitKey();
	return 0;
}

在这里插入图片描述

2.4 opencv函数实现图像旋转

// 图像旋转
void Rotate(const Mat& srcImage, Mat& destImage, double angle)//angle表示要旋转的角度
{
	Point2f center(srcImage.cols / 2, srcImage.rows / 2);//中心
	Mat M = getRotationMatrix2D(center, angle, 1);//计算旋转的仿射变换矩阵 
	warpAffine(srcImage, destImage, M, Size(srcImage.cols, srcImage.rows));//仿射变换  
	circle(destImage, center, 2, Scalar(255, 0, 0));
}

int main()
{
	//读入图像,并判断图像是否读入正确
	cv::Mat srcImage = imread("E:\\Lena.jpg");
	if (!srcImage.data)
	{
		puts("打开图像文件失败");
		return -1;
	}
	imshow("srcImage", srcImage);
	//将图片按比例缩放至宽为250像素的大小
	Mat destImage;
	double angle = 9.9;//角度
	Rotate(srcImage, destImage, angle);
	imshow("dst", destImage);
	waitKey(0);
	return 0;
}

在这里插入图片描述

旋转分为三步操作:
1. 首先,你需要得到旋转的中心。这通常是你要旋转的图像的中心。
2. 接下来,创建2d旋转矩阵。OpenCV提供了我们在上面讨论过的getRotationMatrix2D()函数。
3. 最后,使用在上一步中创建的旋转矩阵对图像应用仿射变换。OpenCV中的warpAffine()函数完成这项工作。

getRotationMatrix2D(center, angle, scale)
getRotationMatrix2D()函数接受以下参数:
	center:图像的旋转中心:
	angle: 旋转角度:
	scale :一个各向同性的比例因子,根据提供的值将图像向上或向下缩放
	如果angle是正的,图像将逆时针方向旋转。如果你想顺时针旋转图像相同的量,那么角度需要是负的。

warpAffine()函数的作用是:对图像应用一个仿射变换。在进行仿射变换后,原图像中所有的平行线在输出图像中也保持平行。
warpAffine(
    src, 
    M, 
    dsize[, 
    dst[, 
    flags[, 
    borderMode[, 
    borderValue]]]]
)
函数的参数:
src:原图
M:变换矩阵
dsize:输出图像的大小
dst:输出图像
flags: 插值方法的组合如INTER_LINEAR或INTER_NEAREST
borderMode:像素扩展方法
borderValue:在边界不变的情况下使用的值,默认值为0

三、图像翻转

在这里插入图片描述

3.1左右翻转

//图像翻转,图像大小不变
Mat imageTranslation1(Mat& srcImage)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size(), srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{

				resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>(i, nCols-j-1);
		
		}
	}
	return resultImage;
}


int main()
{
	//读取图像
	Mat srcImage = imread("E:\\Lena.jpg");
	if (srcImage.empty())
	{
		return -1;
	}

	//显示原图像
	imshow("原图像", srcImage);
	int x0ffset = 50;
	int y0ffset = 80;
	Mat resultImage1 = imageTranslation1(srcImage);
	imshow("resultImage1", resultImage1);
	
	cv::waitKey(0);
	return 0;
}

在这里插入图片描述

3.2、上下翻转

//图像翻转,图像大小不变
Mat imageTranslation1(Mat& srcImage)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size(), srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{

				resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>(nRows-1-i, j);
		
		}
	}
	return resultImage;
}

3.3 上下颠倒,左右相反

//图像翻转,图像大小不变
Mat imageTranslation1(Mat& srcImage)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size(), srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{

				resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>(nRows-1-i, nCols-1-j);
		
		}
	}
	return resultImage;
}

在这里插入图片描述

4、错切变换

图像的错切变换也称斜切,是指平面景物在投影平面上的非垂直投影,使图像中的图形在水平方向或垂直方向产生扭变。
以水平扭变为例,像素点 (x,y) 在水平方向发生扭变变成斜边,而在垂直方向的边不变,可以由以下公式描述:
在这里插入图片描述

4.1 实现错切变换

//图像错切
Mat imageTranslation(Mat& srcImage, float a,float b)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size(), srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{
			if (i + a * j > 0 && i + a * j < nRows && i * b + j >0 && i * b + j< nCols)
			{
				resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>( i + a * j, i * b + j);
			}



		}
	}
	return resultImage;
}

在这里插入图片描述

5、仿射变换

仿射变换可以理解为矩阵乘法(线性变换)和向量加法(平移)的变换。本质上,一个仿射变换代表了两个图像之间的关系,可以分别表示为:
1.旋转(线性变换)
2.平移(向量加法)
3.缩放操作(线性变换)
仿射变换通常使用2×3矩阵表示
在这里插入图片描述
将M乘于一个二维向量[x, y],例如图像像素坐标,最终可表示为:
在这里插入图片描述

5.1 求解仿射变换

仿射变换基本上是两个图像之间的关系。这种关系的信息可以通过两种方式获得:
1.已知X和T,那我们的任务就是求M;
2.已知M和X,应用T=M⋅X,得到T。
如下图:点1、2和3(在图1中形成一个三角形)被映射到图2中,仍然形成一个三角形,但现在它们已经发生了变化。如果我们找到了这3个点的仿射变换,那么我们就可以将找到的关系应用到图像中的所有像素上。
在这里插入图片描述
在这里插入图片描述

5.2 OpenCV实现仿射变换

//全局变量
String src_windowName = "原图像";
String warp_windowName = "仿射变换";
String warp_rotate_windowName = "仿射旋转变换";
String rotate_windowName = "图像旋转";

int main()
{
	Point2f srcTri[3];
	Point2f dstTri[3];

	Mat rot_mat(2, 3, CV_32FC1);
	Mat warp_mat(2, 3, CV_32FC1);
	Mat srcImage, warp_dstImage, warp_rotate_dstImage, rotate_dstImage;

	//加载图像
	srcImage = imread("E:\\Lena.jpg");

	//判断文件是否加载成功
	if (srcImage.empty())
	{
		cout << "图像加载失败!" << endl;
		return -1;
	}
	else
		cout << "图像加载成功!" << endl << endl;

	//创建仿射变换目标图像与原图像尺寸类型相同
	warp_dstImage = Mat::zeros(srcImage.rows, srcImage.cols, srcImage.type());

	//设置三个点来计算仿射变换
	srcTri[0] = Point2f(0, 0);
	srcTri[1] = Point2f(srcImage.cols - 1, 0);
	srcTri[2] = Point2f(0, srcImage.rows - 1);

	dstTri[0] = Point2f(srcImage.cols * 0.0, srcImage.rows * 0.33);
	dstTri[1] = Point2f(srcImage.cols * 0.85, srcImage.rows * 0.25);
	dstTri[2] = Point2f(srcImage.cols * 0.15, srcImage.rows * 0.7);

	//计算仿射变换矩阵
	warp_mat = getAffineTransform(srcTri, dstTri);

	//对加载图形进行仿射变换操作
	warpAffine(srcImage, warp_dstImage, warp_mat, warp_dstImage.size());

	//计算图像中点顺时针旋转50度,缩放因子为0.6的旋转矩阵
	Point center = Point(warp_dstImage.cols / 2, warp_dstImage.rows / 2);
	double angle = -50.0;
	double scale = 0.6;

	//计算旋转矩阵
	rot_mat = getRotationMatrix2D(center, angle, scale);

	//旋转已扭曲图像
	warpAffine(warp_dstImage, warp_rotate_dstImage, rot_mat, warp_dstImage.size());

	//将原图像旋转
	warpAffine(srcImage, rotate_dstImage, rot_mat, srcImage.size());

	//显示变换结果
	namedWindow(src_windowName, WINDOW_AUTOSIZE);
	imshow(src_windowName, srcImage);

	namedWindow(warp_windowName, WINDOW_AUTOSIZE);
	imshow(warp_windowName, warp_dstImage);

	namedWindow(warp_rotate_windowName, WINDOW_AUTOSIZE);
	imshow(warp_rotate_windowName, warp_rotate_dstImage);

	namedWindow(rotate_windowName, WINDOW_AUTOSIZE);
	imshow(rotate_windowName, rotate_dstImage);

	waitKey(0);

	return 0;
}

在这里插入图片描述

5.3手动

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

#define PI 3.1415927
#define MAX(a,b) (((a)>(b))?(a):(b))

// 单点双线性插值
// [输入]	ii--dst的行索引
//			jj--dst的列索引	
//			u_src--jj反向映射到src中对应的列索引
//			v_src--ii反向映射到src中对应的行索引
int Bilinear_interpolation_img(Mat src, Mat& dst, int ii, int jj, double u_src, double v_src)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	if (u_src >= 0 && u_src <= src.cols - 1 && v_src >= 0 && v_src <= src.rows - 1)
	{
		int x1 = int(u_src), x2 = (int)(u_src + 0.5), y1 = (int)v_src, y2 = (int)(v_src + 0.5);
		double pu = fabs(u_src - x1), pv = fabs(v_src - y2);
		if (src.channels() == 1)
		{
			dst.at<uchar>(ii, jj) = (1 - pv) * (1 - pu) * src.at<uchar>(y2, x1) +
				(1 - pv) * pu * src.at<uchar>(y2, x2) +
				pv * (1 - pu) * src.at<uchar>(y1, x1) + pv * pu * src.at<uchar>(y1, x2);
		}
		else
		{
			dst.at<Vec3b>(ii, jj)[0] = (1 - pv) * (1 - pu) * src.at<Vec3b>(y2, x1)[0] +
				(1 - pv) * pu * src.at<Vec3b>(y2, x2)[0] +
				pv * (1 - pu) * src.at<Vec3b>(y1, x1)[0] +
				pv * pu * src.at<Vec3b>(y1, x2)[0];
			dst.at<Vec3b>(ii, jj)[1] = (1 - pv) * (1 - pu) * src.at<Vec3b>(y2, x1)[1] +
				(1 - pv) * pu * src.at<Vec3b>(y2, x2)[1] +
				pv * (1 - pu) * src.at<Vec3b>(y1, x1)[1] +
				pv * pu * src.at<Vec3b>(y1, x2)[1];
			dst.at<Vec3b>(ii, jj)[2] = (1 - pv) * (1 - pu) * src.at<Vec3b>(y2, x1)[2] +
				(1 - pv) * pu * src.at<Vec3b>(y2, x2)[2] +
				pv * (1 - pu) * src.at<Vec3b>(y1, x1)[2] +
				pv * pu * src.at<Vec3b>(y1, x2)[2];
		}

	}
	return 1;
}

//水平镜像、垂直镜像变换
// [输入]	way_mirror镜像方法:0水平镜像 1垂直镜像
int affine_mirrorImg(Mat src, Mat& dst, int way_mirror)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U) {
		printf("输入图像有误!\n");
		return 0;
	}

	if (way_mirror != 0 && way_mirror != 1) {
		printf("输入镜像方法不为1或0,way_mirror: %d!\n", way_mirror);
		return 0;
	}

	int dst_h = src.rows, dst_w = src.cols;//目标图像宽高 初始化为原图宽高
	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	Mat M_mirr = (Mat_<double>(3, 3) << -1, 0, 0, 0, 1, 0, 0, 0, 1);
	if (way_mirror) {
		M_mirr.at<double>(0, 0) = 1;
		M_mirr.at<double>(1, 1) = -1;
	}
	Mat M_corrToSrc = (Mat_<double>(3, 3) << 1, 0, src.cols, 0, 1, 0, 0, 0, 1);
	if (way_mirror) {
		M_corrToSrc.at<double>(0, 2) = 0;
		M_corrToSrc.at<double>(1, 2) = src.rows;
	}
	Mat M_trans = M_corrToSrc * M_mirr;

	Mat M_trans_inv = M_trans.inv();
	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	if (src.channels() == 3)
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC3); //RGB图初始
	else
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC1);

	//反向映射
	for (ii = 0; ii < dst_h; ++ii)
	{
		for (jj = 0; jj < dst_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			// 边界问题
			if (u_src < 0) u_src = 0;
			if (v_src < 0) v_src = 0;
			if (u_src > src.cols - 1) u_src = src.cols - 1;
			if (v_src > src.rows - 1) v_src = src.rows - 1;

			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);
		}
	}
	return 1;
}

// 图像旋转(绕图像中心) 逆时针旋转为正
// 可处理8位单通道或三通道图像
int affine_rotateImg(Mat src, Mat& dst, double Angle)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	double angle = 0, cos_a = 0, sin_a = 0;//旋转角度
	int dst_h = src.rows, dst_w = src.cols;//目标图像宽高 初始化为原图宽高
	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	angle = Angle / 180 * CV_PI;
	cos_a = cos(angle);
	sin_a = sin(angle);
	dst_h = (int)(fabs(src.rows * cos_a) + fabs(src.cols * sin_a) + 0.5);
	dst_w = (int)(fabs(src.rows * sin_a) + fabs(src.cols * cos_a) + 0.5);

	if (src.channels() == 3)
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC3); //RGB图初始
	}
	else
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC1);
	}
	Mat M_toPhysics = (Mat_<double>(3, 3) << 1, 0, -0.5 * src.cols, 0, -1, 0.5 * src.rows, 0, 0, 1);
	Mat M_rotate = (Mat_<double>(3, 3) << cos_a, -sin_a, 0, sin_a, cos_a, 0, 0, 0, 1);
	Mat M_toPixel = (Mat_<double>(3, 3) << 1, 0, 0.5 * dst.cols, 0, -1, 0.5 * dst.rows, 0, 0, 1);
	Mat M_trans = M_toPixel * M_rotate * M_toPhysics;
	Mat M_trans_inv = M_trans.inv();
	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	//反向映射
	for (ii = 0; ii < dst_h; ++ii)
	{
		for (jj = 0; jj < dst_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			//处理边界问题
			if (int(Angle) % 90 == 0)
			{
				if (u_src < 0) u_src = 0;
				if (v_src < 0) v_src = 0;
				if (u_src > src.cols - 1) u_src = src.cols - 1;
				if (v_src > src.rows - 1) v_src = src.rows - 1;
			}
			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);
		}
	}

	return 1;
}

// 图像平移 在像素坐标系下进行 图像左顶点为原点,x轴为图像列,y轴为图像行
// tx: x方向(图像列)平移量,向右平移为正
// ty: y方向(图像行)平移量,向下平移为正
int affine_moveImg(Mat src, Mat& dst, double tx, double ty)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	int dst_h = src.rows, dst_w = src.cols;
	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	if (src.channels() == 3)
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC3); //RGB图初始
	}
	else
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC1);
	}

	Mat M_toPhysics = (Mat_<double>(3, 3) << 1, 0, tx, 0, 1, ty, 0, 0, 1);
	Mat M_trans_inv = M_toPhysics.inv();
	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	//反向映射
	for (ii = 0; ii < dst_h; ++ii)
	{
		for (jj = 0; jj < dst_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);

		}
	}

	return 1;
}

// 缩放 以图像左顶点为原点
// cx: 水平缩放尺度
// cy: 垂直缩放尺度
int affine_scalingImg(Mat src, Mat& dst, double cx, double cy)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	int dst_h = (int)(cy * src.rows + 0.5), dst_w = (int)(cx * src.cols + 0.5);
	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	if (src.channels() == 3)
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC3); //RGB图初始
	}
	else
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC1);
	}

	Mat M_scale = (Mat_<double>(3, 3) << cx, 0, 0, 0, cy, 0, 0, 0, 1);
	Mat M_trans_inv = M_scale.inv();
	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	//反向映射
	for (ii = 0; ii < dst_h; ++ii)
	{
		for (jj = 0; jj < dst_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			// 边界问题
			if (u_src < 0) u_src = 0;
			if (v_src < 0) v_src = 0;
			if (u_src > src.cols - 1) u_src = src.cols - 1;
			if (v_src > src.rows - 1) v_src = src.rows - 1;

			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);
		}
	}
	return 1;
}

// 错切变换 以图像中心为偏移中心
// [输入]	sx--水平错切系数
//			sy--垂直错切系数		
int affine_miscut(Mat src, Mat& dst, double sx, double sy)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	int dst_h = fabs(sy) * src.cols + src.rows, dst_w = fabs(sx) * src.rows + src.cols;
	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	if (src.channels() == 3)
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC3); //RGB图初始
	}
	else
	{
		dst = cv::Mat::zeros(dst_h, dst_w, CV_8UC1);
	}

	Mat M_toPhysics = (Mat_<double>(3, 3) << 1, 0, -0.5 * src.cols, 0, -1, 0.5 * src.rows, 0, 0, 1);
	Mat M_rotate = (Mat_<double>(3, 3) << 1, sx, 0, sy, 1, 0, 0, 0, 1);
	Mat M_toPixel = (Mat_<double>(3, 3) << 1, 0, 0.5 * dst.cols, 0, -1, 0.5 * dst.rows, 0, 0, 1);
	Mat M_trans = M_toPixel * M_rotate * M_toPhysics;
	Mat M_trans_inv = M_trans.inv();
	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	//反向映射
	for (ii = 0; ii < dst_h; ++ii)
	{
		for (jj = 0; jj < dst_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);
		}
	}

	return 1;
}

// 组合变换示例
// 缩放->旋转->错切(即偏移)
// [输入]	
int affine_srm_combImg(Mat src, Mat& dst, double cx, double cy, double Angle, double sx, double sy)
{
	if (src.rows <= 0 || src.cols <= 0 ||
		(src.channels() != 1 && src.channels() != 3) || src.depth() != CV_8U)
	{
		printf("输入图像有误!\n");
		return 0;
	}

	double angle, cos_a, sin_a;
	int dst_s_h, dst_s_w, dst_sr_h, dst_sr_w, dst_srm_h, dst_srm_w;

	angle = Angle / 180 * CV_PI;
	cos_a = cos(angle);
	sin_a = sin(angle);
	dst_s_h = (int)(cy * src.rows + 0.5);
	dst_s_w = (int)(cx * src.cols + 0.5);
	dst_sr_h = (int)(fabs(dst_s_h * cos_a) + fabs(dst_s_w * sin_a) + 0.5);
	dst_sr_w = (int)(fabs(dst_s_h * sin_a) + fabs(dst_s_w * cos_a) + 0.5);
	dst_srm_h = fabs(sy) * dst_sr_w + dst_sr_h;
	dst_srm_w = fabs(sx) * dst_sr_h + dst_sr_w;

	int ii = 0, jj = 0;
	double u_src = 0, v_src = 0;

	if (src.channels() == 3)
	{
		dst = cv::Mat::zeros(dst_srm_h, dst_srm_w, CV_8UC3); //RGB图初始
	}
	else
	{
		dst = cv::Mat::zeros(dst_srm_h, dst_srm_w, CV_8UC1);
	}

	Mat M_scale = (Mat_<double>(3, 3) << cx, 0, 0, 0, cy, 0, 0, 0, 1);

	Mat M_toPhysics = (Mat_<double>(3, 3) << 1, 0, -0.5 * dst_s_w, 0, -1, 0.5 * dst_s_h, 0, 0, 1);
	Mat M_rotate = (Mat_<double>(3, 3) << cos_a, -sin_a, 0, sin_a, cos_a, 0, 0, 0, 1);
	Mat M2 = M_rotate * M_toPhysics;

	Mat M_mis = (Mat_<double>(3, 3) << 1, sx, 0, sy, 1, 0, 0, 0, 1);
	Mat M_toPixel = (Mat_<double>(3, 3) << 1, 0, 0.5 * dst.cols, 0, -1, 0.5 * dst.rows, 0, 0, 1);
	Mat M3 = M_toPixel * M_mis;

	Mat M_trans = M3 * M2 * M_scale;
	Mat M_trans_inv = M_trans.inv();

	Mat dst_uv(3, 1, CV_64F);
	dst_uv.at<double>(2, 0) = 1;
	Mat src_uv(dst_uv);

	//反向映射
	for (ii = 0; ii < dst_srm_h; ++ii)
	{
		for (jj = 0; jj < dst_srm_w; ++jj)
		{
			dst_uv.at<double>(0, 0) = jj;
			dst_uv.at<double>(1, 0) = ii;
			src_uv = M_trans_inv * dst_uv;
			u_src = src_uv.at<double>(0, 0);
			v_src = src_uv.at<double>(1, 0);

			//处理边界问题
			if (int(Angle) % 90 == 0)
			{
				if (u_src < 0) u_src = 0;
				if (v_src < 0) v_src = 0;
				if (u_src > src.cols - 1) u_src = src.cols - 1;
				if (v_src > src.rows - 1) v_src = src.rows - 1;
			}

			//双线性插值
			Bilinear_interpolation_img(src, dst, ii, jj, u_src, v_src);

		}
	}
	return 1;
}

int main()
{
	Mat src = imread("E:\\Lena.jpg", 1), dst;

	//水平、垂直镜像
	int way_mirror = 1;
	//affine_mirrorImg(src, dst, way_mirror);

	//旋转
	double angle_r = 250;
	//int flag = affine_rotateImg(src, dst, angle_r);
	//if (flag == 0)
	//{
	//	return;
	//}

	//平移
	double tx = 50, ty = -50;
	//	affine_moveImg(src, dst, tx, ty);

		//尺度变换(缩放)
	double cx = 1.5, cy = 1.5;
	affine_scalingImg(src, dst, cx, cy);

	//错切(偏移)
	double sx = 0.2, sy = 0.2;
	//affine_trans_deviation(src, dst, sx, sy);
	affine_miscut(src, dst, sx, sy);

		//组合变换 缩放->旋转->错切(即偏移)
	//affine_srm_combImg(src, dst, cx, cy, angle_r, sx, sy);

		// 显示 
	Mat src_resize, dst_resize;
	//affine_scalingImg(src, src_resize, 0.4, 0.3);
	//affine_scalingImg(dst, dst_resize, 0.4, 0.3);

	namedWindow("src", 0);
	namedWindow("dst", 0);
	imshow("src", src);
	imshow("dst", dst);

	waitKey(0);
	system("pause");
	return 0;
}

6、图像缩放

图像可以通过两种方式调整大小:

假设图像的初始尺寸为 W×H,其中 W 和 H 分别代表宽度和高度。如果想要加倍的大小(尺寸)的图像,可以调整或缩放图像到 2W×2H。类似地,如果想将图像的大小(尺寸)减少一半,那么可以调整或缩放图像到W/2×H/2。因为只是想缩放图像,可以在调整大小时传递缩放因子(长度和宽度),图像输出尺寸可以根据这些比例因子计算出来。

同时,也可能想要将图像的大小调整为一个固定的尺寸,比如 420×360像素。在这种情况下,缩放将不起作用,因为不能确定初始维度是固定维度的倍数(或因数)。这要求在调整大小时直接传递图像的新尺寸。

在这里插入图片描述
上图显示了想要调整大小的图像和像素值。目前,它的尺寸是 5×5。假设我们想要翻倍。这将导致以下输出。但是,我们想要填充像素值。
在这里插入图片描述
让我们看看我们有哪些不同的选择。可以复制像素。这将给我们如下图所示的结果:
在这里插入图片描述
如果去掉前面图像中的像素值(方格里面的数字),将得到如下图所示的图像。将其与原始图像进行比较。注意它看起来和原始图像是多么的相似
在这里插入图片描述
类似地,如果想要将图像缩小一半,可以减少一些像素。你会注意到,在调整大小时,复制了像素。还可以使用其他一些技巧。譬如:可以使用插值,即根据相邻像素的像素值找出新的像素值,而不是直接复制它们。这给了颜色一个很好的平滑过渡。下图显示了如果我们使用不同的插值,结果是如何变化的。从下图中,可以看到,当从左到右执行时,新创建的像素值的计算方式是不同的。在前三幅图像中,像素是直接从相邻像素复制的,而在后一幅图像中,像素值依赖于所有相邻像素(左、右、上、下),也依赖于对角线相邻的像素:
在这里插入图片描述

6.1 实现图像缩放

//图像缩小
Mat imageTranslation(Mat& srcImage,int n)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size() / n, srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows; i++)
	{
		for (int j = 0; j < nCols; j++)
		{
			if (n * i < nRows && n * j < nCols)
			{
				resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>(n * i, n * j);
			}

			

		}
	}
	return resultImage;
}
//图像放大
Mat imageTranslation1(Mat& srcImage, int n)
{
	int nRows = srcImage.rows;
	int nCols = srcImage.cols;
	Mat resultImage(srcImage.size() * n, srcImage.type());
	//遍历图像
	for (int i = 0; i < nRows * n; i++)
	{
		for (int j = 0; j < nCols * n ; j++)
		{

			
			resultImage.at<Vec3b>(i, j) = srcImage.at<Vec3b>( i / n , j / n);
			
				
			



		}
	}
	return resultImage;
}


int main()
{
	//读取图像
	Mat srcImage = imread("E:\\Lena.jpg");
	if (srcImage.empty())
	{
		return -1;
	}

	//显示原图像
	imshow("原图像", srcImage);
	int x0ffset = 50;
	int y0ffset = 80;
	int n = 2;
	Mat resultImage1 = imageTranslation(srcImage,n);
	imshow("缩小图片", resultImage1);
	Mat resultImage2 = imageTranslation1(srcImage, n);
	imshow("放大图片", resultImage2);

	cv::waitKey(0);
	return 0;
}

在这里插入图片描述

Mat imgDown_1(Mat& srcimg, float kx, float ky)
{
	//提取图像的分辨率
		int nrows = cvRound(srcimg.rows * kx);
	int ncols = cvRound(srcimg.cols * ky);
	Mat resimg(nrows, ncols, srcimg.type());
	for (int i = 0; i < nrows; i++)
	{
		for (int j = 0; j < ncols; j++)
		{
			//根据水平因子计算坐标
			int x = static_cast<int>((i + 1) / kx + 0.5) - 1;
			//根据垂直因子计算坐标
			int y = static_cast<int>((j + 1) / ky + 0.5) - 1;
			resimg.at<Vec3b>(i, j) = srcimg.at<Vec3b>(x, y);
		}
	}
	return resimg;
}
//对图像进行放大
Mat imgUp_1(Mat& srcimg, float kx, float ky)
{
	int nrows = srcimg.rows * kx;
	int ncols = srcimg.cols * ky;
	Mat resimg(nrows, ncols, srcimg.type());
	for (int i = 0; i < nrows; i++)
	{
		//int x = i / kx;
		int x = static_cast<int>((i + 1) / kx + 0.7) - 1;
		for (int j = 0; j < ncols; j++)
		{

			//int y = j / ky;
			int y = static_cast<int>((j + 1) / ky + 0.7) - 1;
			resimg.at<Vec3b>(i, j) = srcimg.at<Vec3b>(x, y);
		}
	}
	return resimg;
}

Vec3b areaAverage(const Mat& srcimg, Point_<int> leftPoint, Point_<int> rightPoint)
{
	int tmp1 = 0, tmp2 = 0, tmp3 = 0;
	//计算区域字块像素点个数
		int nPix = (rightPoint.x - leftPoint.x + 1) * (rightPoint.y - leftPoint.y + 1);
	//对区域字块各个通道对像素值求和
	for (int i = leftPoint.x; i <= rightPoint.x; i++)
	{
		for (int j = leftPoint.y; j <= rightPoint.y; j++)
		{
			tmp1 += srcimg.at<Vec3b>(i, j)[0];
			tmp2 += srcimg.at<Vec3b>(i, j)[1];
			tmp3 += srcimg.at<Vec3b>(i, j)[2];
		}
	}
	//对每个通道求均值
	Vec3b vecTmp;
	vecTmp[0] = tmp1 / nPix;
	vecTmp[1] = tmp2 / nPix;
	vecTmp[2] = tmp3 / nPix;
	return vecTmp;
}

Mat imgDown_2(const Mat& srcimg, double kx, double ky)
{
	int nrows = srcimg.rows * kx;
	int ncols = srcimg.cols * ky;
	/*
	int nrows = cvRound(srcimg.rows * kx);
	int ncols = cvRound(srcimg.cols * ky);
	*/
	Mat resimg(nrows, ncols, srcimg.type());
	//区域子块的左上角行列坐标
	int leftRowCoordinate = 0;
	int leftColCoordinate = 0;
	for (int i = 0; i < nrows; i++)
	{
		//根据水平因子计算坐标
		int x = static_cast<int>((i + 1) / kx + 0.5) - 1;
		for (int j = 0; j < ncols; j++)
		{
			//根据垂直因子计算坐标
			int y = static_cast<int>((j + 1) / ky + 0.5) - 1;
			//求解区域子块的均值
			resimg.at<Vec3b>(i, j) = areaAverage(srcimg, Point_<int>(leftRowCoordinate, leftColCoordinate), Point_<int>(x, y));
			//resimg.at<Vec3b>(i, j) = srcimg.at<Vec3b>(x, y);
			//更新下子块左上角的列坐标,行坐标不变
			leftColCoordinate = y + 1;
		}
		leftColCoordinate = 0;
		//更新下子块左上角的行坐标
		leftRowCoordinate = x + 1;
	}
	return resimg;
}
//对图像进行放大
Mat imgUp_2(const Mat& srcimg, double kx, double ky)
{
	int nrows = srcimg.rows * kx;
	int ncols = srcimg.cols * ky;
	Mat resimg(nrows, ncols, srcimg.type());
	int leftRowCoordinate = 0;
	int leftColCoordinate = 0;
	for (int i = 0; i < nrows; i++)
	{
		int x = i / kx;
		for (int j = 0; j < ncols; j++)
		{
			int y = j / ky;
			//resimg.at<Vec3b>(i, j) = areaAverage(srcimg, Point_<int>(leftRowCoordinate, leftColCoordinate), Point_<int>(x, y));
			resimg.at<Vec3b>(i, j) = srcimg.at<Vec3b>(x, y);

			leftColCoordinate = y + 1;
		}
		leftColCoordinate = 0;
		leftRowCoordinate = x + 1;
	}
	return resimg;
}

int main()
{
	//Mat srcimg = imread("C:\\Users\\H\\Desktop\\1.png");
	Mat srcimg = imread("E:\\Lena.jpg");

	if (srcimg.empty())
	{
		return -1;
	}
	imshow("srcimg", srcimg);

	//自定义图像缩放模式
	Mat upimg1 = imgUp_1(srcimg, 2, 2);
	imshow("upimg1", upimg1);

	Mat resimg1 = imgDown_1(srcimg, 0.5, 0.5);
	imshow("resimg1", resimg1);

	Mat resimg2 = imgDown_2(srcimg, 0.5, 0.5);
	imshow("resimg2", resimg2);

	Mat upimg2 = imgUp_2(srcimg, 2, 2);
	imshow("upimg2", upimg2);

	//图像金子塔实现图像的缩放
	Mat pyrDownimg;
	pyrDown(srcimg, pyrDownimg);
	imshow("pyrDownimg", pyrDownimg);
	Mat pyrUpimg;
	pyrUp(srcimg, pyrUpimg);
	imshow("pyrUpimg", pyrUpimg);

	//resize方式实现图像的缩放
	Mat dstimg;
	const double scaleVal = 2;
	//resize(srcimg, dstimg, Size(srcimg.cols*0.5, srcimg.rows*0.5));
	resize(srcimg, dstimg, Size(srcimg.cols * 2, srcimg.rows * 2));
	imshow("dstimg", dstimg);

	waitKey(0);
	return 0;
}

在这里插入图片描述

7.透视变换

仿射变换后依然是平行四边形,并不能做到任意的变换。
在这里插入图片描述
#7.1 透视变换原理
透视变换(Perspective Transformation)是将二维的图片投影到一个三维视平面上,然后再转换到二维坐标下,所以也称为投影映射(Projective Mapping)。简单来说就是二维→三维→二维的一个过程。
透视变换公式:

在这里插入图片描述

透视变换矩阵表示:
在这里插入图片描述

仿射变换是透视变换的子集。接下来再通过除以Z轴转换成二维坐标:
在这里插入图片描述

透视变换中的三维->二维

透视变换相比仿射变换更加灵活,变换后会产生一个新的四边形,但不一定是平行四边形,所以需要非共线的四个点才能唯一确定,原图中的直线变换后依然是直线。因为四边形包括了所有的平行四边形,所以透视变换包括了所有的仿射变换。

7.2 实现透视变换

int main() {

	string path = "E:\\Lena.jpg";
	Mat img = imread(path);
	float w = 150, h = 250;
	Mat matrix, imgWarp;
	Point2f src[4] = { {96,94},{212,94},{96,209},{212,209} };
	Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };
	matrix = getPerspectiveTransform(src, dst);
	warpPerspective(img, imgWarp, matrix, Point(w, h));
	for (int i = 0; i < 4; i++)
	{
		circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);
	}

	imshow("Image", img);
	imshow("Image Warp", imgWarp);
	waitKey(0);
	return 0;
}

在这里插入图片描述

1)Mat getPerspectiveTransform(const Point2f* src, const Point2f* dst)
	//参数const Point2f* src:原图的四个固定顶点
	//参数const Point2f* dst:目标图像的四个固定顶点
	//返回值:Mat型变换矩阵,可直接用于warpAffine()函数
	//注意,顶点数组长度超4个,则会自动以前4个为变换顶点;数组可用Point2f[]或Point2f*表示
    //注意:透视变换的点选取变为4个2)C++ void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())
	//参数InputArray src:输入变换前图像
	//参数OutputArray dst:输出变换后图像,需要初始化一个空矩阵用来保存结果,不用设定矩阵尺寸
	//参数InputArray M:变换矩阵,用另一个函数getAffineTransform()计算
	//参数Size dsize:设置输出图像大小
	//参数int flags = INTER_LINEAR:设置插值方式,默认方式为线性插值(另一种WARP_FILL_OUTLIERS)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59489.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】

【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】 把DStream写入到MySQL数据库中 Spark 3.4.1MySQL 8.0.30sbt 1.9.2 文章目录 【IDEASpark Streaming 3.4.1Dstream监控套接字流统计WordCount保存至MySQL8】前言一、背景说明二、使用步骤1.引入库2…

某东详情页h5st 算法分析

文章目录 声明目标地址h5st 算法四大入参分析1. z值生成2. v值生成3. b值生成4. r值生成风控浅谈往期逆向文章推荐声明 本文章中所有内容仅供学习交流,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请私信我立即删除! 目标地址 aHR0cHM6Ly…

IO进程线程day7(2023.8.4)

一、Xmind整理&#xff1a; 二、课上练习&#xff1a; 练习1&#xff1a;创建两个线程&#xff1a;其中一个线程拷贝前半部分&#xff0c;另一个线程拷贝后半部分。 只允许开一份资源&#xff0c;且用互斥锁方式实现。 提示&#xff1a;找临界区--->找临界资源。 #includ…

单例模式和工厂模式

目录 今日良言&#xff1a;关关难过关关过&#xff0c;步步难行步步行 一、单例模式 1.饿汉模式 2.懒汉模式 二、工厂模式 今日良言&#xff1a;关关难过关关过&#xff0c;步步难行步步行 一、单例模式 首先来解释一下&#xff0c;什么是单例模式。 单例模式也就是单个…

linux 文件的权限

修改文件的权限 我这里有一个test.txt 文件&#xff0c;我们ll 查看一下该文件相应的属性信息 其中&#xff0c;权限的位置是相对固定的即&#xff1a; 第一个位置是r 权限&#xff0c;代表可读权限。 第二个位置是w权限&#xff0c;代表可修改权限。 第三个位置是x权限&…

一百四十一、Kettle——kettle8.2在Windows本地开启carte服务以及配置子服务器

一、目的 在kettle建好共享资源库后&#xff0c;为了给在服务器上部署kettle的carte服务躺雷&#xff0c;先在Windows本地测试一下怎么玩carte服务 二、Kettle版本以及在Windows本地安装路径 kettle版本是8.2 pdi-ce-8.2.0.0-342 kettle本地安装路径是D:\j…

linuxARM裸机学习笔记(2)----汇编LED灯实验

MX6ULL 的 IO IO的复用功能 这里的只使用了低五位&#xff0c;用来配置io口&#xff0c;其中bit0~bit3(MUX_MODE)就是设置 GPIO1_IO00 的复用功能的&#xff0c;GPIO1_IO00 一共可以复用为 9种功能 IO&#xff0c;分别对应 ALT0~ALT8。每种对应了不同的功能 io的属性配置 HY…

拦截器在SpringBoot中使用,HandlerInterceptor,WebMvcConfigurer

拦截器在Controller之前执行。 用于权限校验&#xff0c;日志记录&#xff0c;性能监控 在SpringBoot中使用 创建拦截器类&#xff1a;首先&#xff0c;创建一个Java类来实现拦截器逻辑。拦截器类应该实现Spring提供的HandlerInterceptor接口。实现拦截器方法&#xff1a;拦…

Unity数字可视化学校_昼夜(二)

1、时间设置&#xff1a; 2、新建夜晚 3、新建侧置球&#xff08;BOX&#xff09;,测试灯光强度 降低亮度 色调&#xff1a;冷色调 4、自发光 新建shader 灯光控制 道路线&#xff1a; 建筑&#xff1a; 夜晚加灯光&#xff1a; 玻璃&#xff1a; 加大灯光数量&#xff1a; 边缘…

uni-ajax网络请求库使用

uni-ajax网络请求库使用 uni-ajax是什么 uni-ajax是基于 Promise 的轻量级 uni-app 网络请求库,具有开箱即用、轻量高效、灵活开发 特点。 下面是安装和使用教程 安装该请求库到项目中 npm install uni-ajax编辑工具类request.js // ajax.js// 引入 uni-ajax 模块 import ajax…

服务端高并发分布式结构演进之路

目录 一、常见概念 1.1基本概念 二、架构演进 2.1单机架构 2.2应用数据分离架构 2.3应用服务集群架构 2.4读写分离 / 主从分离架构 2.5引入缓存 —— 冷热分离架构 2.6垂直分库 2.7业务拆分 —— 微服务 一、常见概念 1.1基本概念 应用&#xff08;Application&am…

Grafana集成prometheus(1.Prometheus安装)

下载docker镜像 docker pull prom/prometheus docker pull prom/node-exporter启动 node-exporter 该程序用以采集机器内存等数据 启动脚本 docker run -d -p 9100:9100 prom/node-exporter ss -anptl | grep 9100启动截图 prometheus 启动脚本 # 3b907f5313b7 为镜像i…

C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig-zag/左右双旋/3+4重构)

目录 00.BBST——平衡二叉搜索树01.AVL树02.AVL的插入2.1单旋——zig 与 zag2.2插入节点后的单旋实例2.3手玩小样例2.4双旋实例2.5小结 03.AVL的删除3.1单旋删除3.2双旋删除3.3小结 04.34重构05.综合评价AVL5.1优点5.2缺点 00.BBST——平衡二叉搜索树 本文是介绍众多平衡二叉搜…

上海亚商投顾:沪指震荡微涨 金融、地产午后大幅走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 市场情绪 三大指数早盘震荡&#xff0c;午后集体拉升反弹&#xff0c;创业板指涨超1%。券商等大金融板块午后再度走强&#…

【LNMP】LNMP

LNMP&#xff1a;是目前成熟的企业网站的应用模式之一&#xff0c;指的是一套协同工作的系统和相关软件&#xff1b;能够提供静态页面服务&#xff0c;也可以提供动态web服务 L Linux系统&#xff0c;操作系统N Nginx网站服务&#xff0c;前端&#xff0c;提供前端的静态…

抽象类的顶级理解

目录 1.抽象类的介绍 2. 抽象类语法 3.模板设计模式 1.抽象类的介绍 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是用来描绘对象的&#xff0c;如果 一个类中没有包含足够的信息来描绘一个具体的对象&…

24. 两两交换链表中的节点

头结点dummyHead 定义结点temp用来暂存node2 让node1和node2位置互换&#xff1a;head(temp)->node1->node2->node3->node4 然后让temp等于交换后node1位置&#xff1a;head->node2->node1(temp)->node3->node4 class Solution { public:ListNode*…

学生信息管理系统springboot学校学籍专业数据java jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 学生信息管理系统springboot 系统3权限&#xff1a;超…

数据结构--线性表2-2

目录 一、线性表例题&#xff1a; 二、分配动态内存&#xff1a; 1.动态创建一个空顺序表的算法&#xff1a; 2.动态顺序表的插入算法&#xff1a; 3.动态顺序表的删除 三、线性表的链式表示和实现 例题1&#xff1a;创建链表并插入26个字母 例题2&#xff1a;在链表中取…

MGRE综合

实验 一、实验思路 1.先按照上图配置IP地址及环回 2.写缺省使公网可通 3.让R1、R4、R5每台路由器均成为中心站点形成全连网状结构拓扑 4.让R1成为中心站点R2R3为分支站点 5.分区域宣告ospf之后更改ospf在虚拟接口Tunnel工作方式为broadcast及让R1 当选DR 二、上虚拟机操作…