【雷达通信】非相干多视处理(CSA)(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

“在SAR系统中,多个独立的视可以由飞行载体以不同的方位角通过观察点时天。
一视由天线沿方位向第一个前向四分之一波束部分产生,下一视则来自下一个四分之一波束,
以此类推。然后,由于来自波束各部分的信号到达雷达接收机是重叠在一起的,所
以在时域或者空域上无法对数据进行分离。然而,具有高方位时间带宽积的一个实用SAR系
统是将时间和频率两者绑定在一起的,在多普勒域内包含了各视的所有信息。也就是说,具
有较高多普勒频率的数据一定是由方位向波束前缘触及到的地形点产生的,而当同一地点出
在方位波束后缘四分之一时,产生了多普勒频段低四分之一部分。”[1]

非相干多视处理(Coherent Sum and Average, CSA)是一种用于雷达通信的信号处理技术。在雷达通信中,使用多个接收机来接收从目标反射回来的信号。CSA技术将多个接收到的信号进行处理,以提高信号的质量和可靠性。

CSA技术的基本思想是利用信号的非相干性质来降低噪声的影响。当多个接收机接收到相同的信号时,由于噪声是随机的,它们在接收到信号时的相位和幅度会有所不同。通过将多个接收到的信号进行相加与平均,可以抵消掉噪声的影响,从而提高信号的信噪比。

CSA技术的具体实现包括以下步骤:
1. 将多个接收机接收到的信号进行对齐,即校准它们的时间延迟和相位差。
2. 将对齐后的信号进行相加,以增强信号的幅度。
3. 将相加后的信号进行平均,以降低噪声的影响。

通过采用CSA技术,可以显著提高雷达通信系统的性能和可靠性。它可以用于各种雷达通信应用,如雷达测距、雷达成像和雷达通信等。

需要注意的是,CSA技术虽然可以提高信号的质量,但也会增加系统的计算复杂性和延时。因此,在实际应用中需要权衡计算资源和性能要求。

📚2 运行结果

 

 

部分代码:

Kr = -Kr;                       % 将调频率Kr改成负值
BW_range = 30.111e+06;          % 脉冲宽度
Vr = 7062;                      % 有效雷达速率
Ka = 1733;                      % 方位调频率
fnc = -6900;                    % 多普勒中心频率
Fa = PRF;                       % 方位向采样率
lamda = c/f0;                   % 波长
T_start = 6.5959e-03;           % 数据窗开始时间

Nr = round(Tr*Fr);              % 线性调频信号采样点数
Nrg = Nrg_cells;                % 距离线采样点数
if b == 1 || b == 2
    Naz = Nrg_lines_blk;         % 每一个数据块的距离线数
else
    Naz = Nrg_lines;              % 两个数据块,总共的距离线数
end
NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

R_ref = R0;                     % 参考目标选在场景中心,其最近斜距为 R_ref  
fn_ref = fnc;                   % 参考目标的多普勒中心频率

%%
%
% --------------------------------------------------------------------
% 对原始数据进行补零
% --------------------------------------------------------------------
if b == 1 || b == 2 
    data = zeros(1*2048,3000);
else
    data = zeros(2*2048,3000);
end
data(1:Naz,1:Nrg) = s_echo;
clear s_echo;
s_echo = data;
clear data;
[Naz,Nrg] = size(s_echo);

NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

% 作图显示
figure;
imagesc(abs(s_echo));
title('补零后的原始数据');       % 补零后的原始回波数据(未处理)的幅度图像
%}

%%
% --------------------------------------------------------------------
% 距离(方位)向时间,频率相关定义
% --------------------------------------------------------------------
% 距离
tr = 2*R0/c + ( -Nrg/2 : (Nrg/2-1) )/Fr;                % 距离时间轴
fr = ( -NFFT_r/2 : NFFT_r/2-1 )*( Fr/NFFT_r );          % 距离频率轴
% 方位
ta = ( -Naz/2: Naz/2-1 )/Fa;                            % 方位时间轴
fa = fnc + fftshift( -NFFT_a/2 : NFFT_a/2-1 )*( Fa/NFFT_a );    % 方位频率轴

% 生成距离(方位)时间(频率)矩阵
tr_mtx = ones(Naz,1)*tr;    % 距离时间轴矩阵,大小:Naz*Nrg
ta_mtx = ta.'*ones(1,Nrg);  % 方位时间轴矩阵,大小:Naz*Nrg
fr_mtx = ones(Naz,1)*fr;    % 距离频率轴矩阵,大小:Naz*Nrg
fa_mtx = fa.'*ones(1,Nrg);  % 方位频率轴矩阵,大小:Naz*Nrg

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]《合成孔径雷达成像——算法与实现》 ,(美)卡明等著;洪文等译;电子工业出版社;

[2]《合成孔径雷达——系统与信号处理》 ,(美)柯兰德等著;韩传钊等译;电子工业出

版社

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59319.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MVC配置原理

如果你想保存springboot的mvc配置并且还想自己添加自己的配置就用这个。 视图解析器原理,它会从IOC容器里获取配置好视图解析器的配置类里的视图解析器集合, 然后遍历集合,生成一个一个的视图对象,放入候选 视图里,…

Spring Boot集成单元测试调用dao,service

文章目录 Spring Boot集成单元测试调用dao&#xff0c;service1 添加相关依赖2 新建测试类 Spring Boot集成单元测试调用dao&#xff0c;service 1 添加相关依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-st…

理解 CSS 中的 Containing Block

前言 在开始本文之前先来看一个例子&#xff0c;下面一段简单的 html 代码&#xff0c;布局很简单&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"w…

Clickhouse 优势与部署

一、clickhouse简介 1.1clickhouse介绍 ClickHouse的背后研发团队是俄罗斯的Yandex公司&#xff0c;2011年在纳斯达克上市&#xff0c;它的核心产品是搜索引擎。我们知道&#xff0c;做搜索引擎的公司营收非常依赖流量和在线广告&#xff0c;所以做搜索引擎的公司一般会并行推…

IDEA用Gradle构建项目时,lombok插件无效的解决办法

Lombok 可用来帮助开发人员消除 Java 的重复代码&#xff0c;尤其是对于简单的 Java 对象&#xff08;POJO&#xff09;&#xff0c;比如说getter/setter/toString等方法的编写。它通过注解实现这一目的。 正确使用姿势 一、安装Lombok插件 菜单栏File -> Settings ->…

迁移学习:使用Restnet预训练模型构建高效的水果识别模型

目录 引言 1 迁移学习 1.1 什么是迁移学习 1.2 迁移学习能解决什么问题 1.3 迁移学习面临的三个问题 1.3.1 何时迁移 1.3.2 何处迁移 1.3.3 如何迁移 1.4 迁移学习的分类 1.4.1 按照学习方式的划分 1.4.2 按照使用方法的划分 2 Restnet网络 2.1 Restnet介绍 2.2 Re…

GO学习之 多线程(goroutine)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 文章目录 GO系列前言一、并发介绍1.1 进程和线程和协程1.2 并发和并行 二、goroutine介绍三…

Centos7 上安装 redis-dump 和redis-load 命令

一、安装rvm 1、安装GPG keys gpg2 --keyserver keyserver.ubuntu.com --recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDBcurl -sSL http://rvm.io/mpapis.asc | gpg2 --import - curl -sSL http://rvm.io/pkuczynski.asc | g…

【C++】开源:matplotlib-cpp静态图表库配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍matplotlib-cpp图表库配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&…

VLT:Vision-Language Transformer用于引用的视觉语言转换和查询生成分割

摘要 在这项工作中&#xff0c;我们解决了引用分割的挑战性任务。引用分割中的查询表达式通常通过描述目标对象与其他对象的关系来表示目标对象。因此&#xff0c;为了在图像中的所有实例中找到目标实例&#xff0c;模型必须对整个图像有一个整体的理解。为了实现这一点&#…

超全整理,Jmeter性能测试-常用Jmeter第三方插件详解(超细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Jmeter作为一个开…

不规则文件转JSON

需求分析&#xff1a; 有时候&#xff0c;我们取出来的数据并不是一个规则的JSON文件&#xff0c;这个时候面对存库还是ES检索都是一个问题&#xff0c;所以我们就需要进行解析&#xff0c;然而用字符串分割是不现实的&#xff0c;我们需要一种快速的方法。 问题解决&#x…

使用 Docker Compose 部署单机版 Redis:简单高效的数据缓存与存储

家人们啦&#xff01;今天我们来介绍如何使用 docker-compose 部署单机版 Redis&#xff0c;这是一个简单高效的数据缓存与存储解决方案&#xff0c;广泛应用于Web应用、移动应用以及各类数据处理场景。我们过后几篇文章了将会介绍cluster和sentinel集群的部署。通过本文的指导…

【LeetCode每日一题】——304.二维区域和检索-矩阵不可变

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 矩阵 二【题目难度】 中等 三【题目编号】 304.二维区域和检索-矩阵不可变 四【题目描述】 …

(学习笔记-进程管理)进程

进程 我们编写的代码只是一个存储在硬盘的静态文件&#xff0c;通过编译后会生成二进制可执行文件&#xff0c;当我们运行这个可执行文件后&#xff0c;它会被装载到内存中&#xff0c;接着CPU会执行程序中的每一条指令&#xff0c;那么这个运行中的程序就被称为进程。 现在我…

关于docker的一些深入了解

本文将深入介绍一下docker方面的知识&#xff0c;不尽完全&#xff0c;慢慢完善。 进程 进程的概念 在介绍docker的相关知识前&#xff0c;先了解一下相关概念。进程就是系统中正在运行的程序&#xff0c;进程是操作系统的概念&#xff0c;每当我们执行一个程序时&#xff0…

【unity】Pico VR 开发笔记(视角移动)

【unity】Pico VR 开发笔记&#xff08;视角移动&#xff09; 视角移动是简单的基础功能&#xff0c;这里区别于头显定位获得的小范围位移&#xff0c;是长距离不影响安全边界的位移方式。的常见的位移方式有两种&#xff0c;其一是触发后瞬间传送到指定位置&#xff0c;其次是…

Linux: 设置qmake的Qt版本

Qt开发&#xff0c;qmake会对应一个Qt版本&#xff0c;有时候需要切换这个版本&#xff0c;例如把qmake从Qt5.12切换到Qt5.9, 怎么操作呢&#xff1f; 案例如下&#xff1a; 银河麒麟V10系统&#xff0c;下载安装了Qt5.9.8&#xff0c;但是检查qmake发现它使用的是5.12.8&…

OPC DA 客户端与服务器的那点事

C#开发OPC客户端&#xff0c;使用OPCDAAuto.dll。在开发过程中偶遇小坎坷&#xff0c;主要记录一下问题解决办法。 1、建立客户端&#xff0c;参考链接。建立WinFrom工程&#xff0c;将博客中代码全部复制即可运行&#xff1a; https://www.cnblogs.com/kjgagaga/p/17011730.…

Java阶段五Day19

Java阶段五Day19 问题解析 需求单查询列表功能的bug 业务逻辑&#xff1a; 需要用户登录&#xff0c;师傅入驻&#xff0c;审核入驻通过 查询师傅详情&#xff08;areaIds&#xff0c;categoryIds&#xff09; demand-server-dao-impl 包含持久层实现 requestOrderMappe…