R语言数据探索和分析7-使用随机森林模型对中国GDP及其影响因素分析

一、研究背景和意义

国内生产总值(GDP)是宏观经济领域中最为关注的经济统计数据之一,它反映了一个国家或地区在一定时期内所创造的所有最终商品和服务的总价值。GDP的增长率不仅仅是一个国家经济健康状况的关键指标,还直接关系到国家的社会稳定和人民生活水平。因此,对GDP增长的因素进行深入研究具有极其重要的经济和政策意义。.....

二、理论部分

随机森林(Random Forest)是一种经典的Bagging模型,其弱学习器为决策树模型。如下图所示,随机森林模型会在原始数据集中随机抽样,构成n个不同的样本数据集,然后根据这些数据集搭建n个不同的决策树模型,最后根据这些决策树模型的平均值(针对回归模型)或者投票(针对分类模型)情况来获取最终结果。

为了保证模型的泛化能力(或者说通用能力),随机森林在建立每棵树的时候,往往会遵循两个基本原则:数据随机和特征随机。

1.数据随机:随机地从所有数据当中有放回地抽取数据作为其中一棵决策树的数据进行训练。举例来说,有1000个原始数据,有放回的抽取1000次,构成一组新的数据(因为是有放回抽取,有些数据可能被选中多次,有些数据可能不被选上),作为某一个决策树的数据来进行模型的训练。

2.特征随机:如果每个样本的特征维度为M,指定一个常数k<M,随机地从M个特征中选取k个特征,在使用Python构造随机森林模型时,默认取特征的个数k是M的平方根

随机森林在 bagging 的基础上,再次对特征做了一次随机选择,比如对于自助采样后的每一个子数据集(总共 m 个子数据集),我们并不会像决策数那样用到所有的特征,随机森林会从所有的特征中随机选择一个包含 k(k<n) 个特征的子集。当有一条新数据来,在随机森林的 m 棵树会各自给出一个答案,如果是分类任务,我们就选择投票法,如果是回归任务则一般选择平均值作为输出。不像决策树,越靠近根节点的特征重要性越高,在随机森林中,在每个特征都是有可能成为 “主角” 的,也不容易出现过拟合的问题。

相比于单独的决策树模型来说,随机森林模型由于集成了多个决策树,其模型的预测会更加准确,且模型不容易造成过拟合的现象,模型的泛化能力增强。

三、实证分析

本文选取1990-2020年的GDP、税收等数据,数据为东方财务网爬取而得,其中包括人口(population),固定资产投资(fixed_investments),消费(consumption_level),净出口(total_export_import_volume),税收(tax),广义M2货币,物价指数(CPI),上述变量作为解释变量X,我国GDP作为被解释变量y。首先进行数据展示,如图所示。

library(readxl)
library(dplyr)
library(ggplot2)
library(openxlsx)

读取数据

接下来进行统计性描述分析:

每个经济指标都包含了以下统计量:最小值(Min.)、第一四分位数(1st Qu.)、中位数(Median)、均值(Mean)、第三四分位数(3rd Qu.)和最大值(Max.)。例如:年份(year):数据集涵盖从1990年到2020年的时间范围。

GDP:最小值为18923,最大值超过了100万。

人口(population):最小值超过了11万,最大值为141万。....

接下来进行可视化

# 创建数据框
data <- data.frame(year = data1$year, GDP = data1$GDP)

# 绘制折线图s
ggplot(data, aes(x = year, y = GDP)) +
  geom_line(color = "blue") +
  labs(title = "GDP随时间变化的折线图", x = "年份", y = "GDP") +
  theme_minimal()+
  theme(plot.title = element_text(hjust = 0.5))

横轴代表年份,从1990年到2020年,纵轴代表GDP的值。从图中可以看出,GDP从1990年开始逐渐上升,到了2000年左右上升的速度加快,直到2020年,呈现出一个典型的指数增长趋势。

# 创建包含年份和固定投资的数据框
data_investments <- data.frame(year = data1$year, fixed_investments = data1$fixed_investments)

# 绘制柱状图
ggplot(data_investments, aes(x = factor(year), y = fixed_investments)) +
  geom_bar(stat = "identity", fill = "purple") +
  labs(title = "固定投资随年份的柱状图", x = "年份", y = "固定投资") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))  # 旋转 X 轴标签

柱状图表明,在所示的时间范围内,固定投资的净值有显著的增长趋势,尤其在2000年之后增长速度加快,这可能反映了该地区或国家的经济发展和投资活动的增加。柱状图的增长趋势可以用来分析经济政策、市场情绪、资本支出的变化等多种经济因素。

下面绘制热力图,相关性矩阵热图(Correlation Matrix Heatmap):用于显示不同特征之间的相关性

从这张热图上可以看出,某些指标之间存在高度的正相关性,如M2和CPI在图中是黄色,这意味着它们的相关性较高。而其他如GDP与固定投资之间的相关性较低,因为它们的颜色是较深的蓝色。

随机森林模型预测

library(randomForest)
library(caret)
# 随机森林回归
X <- data1[, -1]  # 选择除了第一列外的所有特征作为 X
y <- data1[, 1]   # 选择第一列作为目标变量 y
# 数据标准化
preprocessParams <- preProcess(X, method = c("center", "scale"))  # 标准化处理
X_s <- predict(preprocessParams, X)  # 标准化后的特征
# 随机森林模型拟合和评价
model <- randomForest(x = X_s, y = y, ntree = 5000, mtry = trunc(ncol(X) / 3), importance = TRUE, na.action = na.omit)
# 输出模型评分
print(model)

总的来说,这个随机森林模型看起来在回归任务中表现出色,它使用了大量的树来进行预测,并且能够解释目标变量中大部分的方差,均方残差也相对较小,这表明它对数据的拟合效果很好。

后面可视化每个变量的重要性:

这张图片是一个柱状图,标题为“协变量的重要性排名图”。图中展示了几个经济指标对于某个模型或分析的相对重要性。具体指标包括消费水平(consumption_level)、人口(population)、税收(tax)、国内生产总值(GDP)和消费者价格指数(CPI)。每根柱子的长度代表了对应指标的重要性,重要性由柱子的高度来表示。

四、结论

在本研究中,我们运用随机森林模型对中国GDP增长的关键因素进行了深入分析,涵盖了1990年至2020年的数据。通过多个解释变量,建立了一个强大的回归模型,成功解释了99.19%的目标变量方差,且均方残差表现良好,随后也可视化了每个特征重要性,其中投资是最为重要的因素。

.....
创作不易,希望大家多点赞关注!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/591166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

leetCode68. 文本左右对齐

基本思路&#xff1a; leetCode68. 文本左右对齐 代码 class Solution { public:vector<string> fullJustify(vector<string>& words, int maxWidth) {vector<string> res;for(int i 0; i < words.size(); i){ // 枚举有多少个单词int j i 1; //…

【JVM】内存调优——内存泄漏、内存溢出

内存调优 什么是内存泄漏、内存泄漏&#xff1f; 内存泄漏&#xff1a;在Java中如果不再使用一个对象&#xff0c;但是该对象依然在GC ROOT的引用链上&#xff0c;这个对象就不会被垃圾回收器回收。内存溢出&#xff1a;内存的使用量超过了Java虚拟机可以分配的上限&#xff…

数字孪生不能接入数据,那还叫数字孪生吗?花架子而已

Hi&#xff0c;我是贝格前端工场&#xff0c;经常给大家分享可视化和数字孪生项目&#xff0c;就有一些老铁说这个不能接入真实数据&#xff0c;是个花架子。我就乐啦&#xff0c;不接入数据那还叫数字孪生吗&#xff1f; 数字孪生是指通过数字化技术对实体世界进行建模、仿真和…

[1702]java旅游资源网上填报系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java旅游资源网上填报系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql…

「 网络安全常用术语解读 」SBOM主流格式SWID详解

国际标准化组织&#xff08;ISO&#xff09;和国际电工委员会&#xff08;International Electrotechnical Commission&#xff0c;IEC&#xff09;发布了ISO/IEC 19770-2软件标识&#xff08;Software Identification&#xff0c;SWID&#xff09;标签标准&#xff0c;该标准定…

数据结构与算法---线性表

线性表 1.顺序表 需求分析 /*创建顺序表具体功能&#xff1a;初始化顺序表销毁顺序表获取顺序表元素个数输出顺序表中的内容自动扩容增 --- 插入数据&#xff08;包含了尾部添加功能&#xff09;删 --- 删除数据&#xff08;包含了尾部删除功能&#xff09;改 --- 修改数据查…

(ARM)ORACLE JDK 22 的下载安装及环境变量的配置

目录 获取JDK 安装JDK 配置JAVA环境变量 其他补充&#xff1a;JDK 22的新特征 1. 语法 2. 库 3. 性能 4. 工具 在今年的3月份&#xff0c;ORACLE 更新了的JDK 发行版 JDK 22&#xff0c;作为了一位ORACLE Primavera系列产品的研究者&#xff0c;其实对JDK的迭代完全不感…

基于.NET WinForms 数据的CURD实现

开发工具 VS 2022 C#&#xff0c;数据库MS SQL SERVER 2019 1.WinForms界面 2.使用SqlDataApater DataSet DataGridView 读取数据 private void ReadData() {//数据库连接串string strConn "Data Source127.0.0.1;Initial CatalogTEST;Persist Security InfoTrue;Us…

Vue 组件通信

组件通信 组件与组件之间的数据传递 组件的数据是独立的&#xff0c;无法直接访问其他组件的数据。通过组件通信&#xff0c;可以访问其他组件的数据。 组件关系 父子关系非父子关系 组件通信解决方案 父子关系 父->子 父组件通过props将数据传递给子组件 App.vue …

模式识别作业:颜色算子的三种阈值分割算法

一、引言&#xff1a; 在图像处理中&#xff0c;我们往往需要提取图像的一些关键信息&#xff0c;比如本篇文章的内容——提取颜色&#xff0c;然而当我们需要提取某一种颜色时&#xff0c;无论图像余下的部分如何“丰富多彩”&#xff0c;他们都不再重要&#xff0c;需要被忽…

IDEA2024版本控制台乱码怎么解决?

在使用最新版本的IDEA时&#xff0c;可能会遇到控制台输出乱码问题&#xff1f; 在网上找了很多办法&#xff0c;修改了IDEA的vmoptions文件也没有用,最后发现原来是要修改这里 Setting>>Build&#xff0c;Execution,Deployment>>Runnr中的VM Options配置&#xf…

Vue进阶之Vue项目实战(一)

Vue项目实战 项目搭建初始化eslint版本约束版本约束eslint配置 stylelintcspellcz-githusky给拦截举个例子 zx 项目搭建 node版本&#xff1a;20.11.1 pnpm版本&#xff1a;9.0.4 初始化 vue3最新的脚手架 pnpm create vite byelide-demo --template vue-ts pnpm i pnpm dev…

2024年 Java 面试八股文——Mybatis篇

目录 1. 什么是Mybatis&#xff1f; 2. 说说Mybatis的优缺点 3. Xml映射文件中&#xff0c;都有哪些标签 4. #{}和&{}有什么区别 5. Mybatis是如何进行分页的,分页插件的原理是什么 6. Mybatis是如何将sql执行结果封装为目标对象并返回的&#xff1f; 7. Mybatis是怎…

【副本向】Lua副本逻辑

副本生命周期 OnCopySceneTick() 子线程每次心跳调用 --副本心跳 function x3323_OnCopySceneTick(elapse)if x3323_g_IsPlayerEnter 0 thenreturn; -- 如果没人进入&#xff0c;则函数直接返回endif x3323_g_GameOver 1 thenif x3323_g_EndTick > 0 thenx3323_CountDown…

简化Transformer模型,以更少的参数实现更快的训练速度

在深度学习领域&#xff0c;Transformer模型因其卓越的性能而广受欢迎&#xff0c;但其复杂的架构也带来了训练时间长和参数数量多的挑战。ETH Zurich的研究人员Bobby He和Thomas Hofmann在最新研究中提出了一种简化的Transformer模型&#xff0c;通过移除一些非必要的组件&…

STM32——GPIO篇

技术笔记&#xff01; 1. 什么是GPIO&#xff1f; GPIO是通用输入输出端口&#xff08;General-purpose input/output&#xff09;的英文简写&#xff0c;是所有的微控制器必不可少的外设之一&#xff0c;可以由STM32直接驱动从而实现与外部设备通信、控制以及采集和捕获的功…

wordpress子比主题美化-为图文列表封面添加动态缩略图特效 多种效果演示

wordpress子比主题-为图文列表文章封面添加动态缩略图特效 给自己子比主题加一个列表文章封面添加动态缩略图 直接复制以下代码&#xff0c;添加到主题自定义CSS代码中即可&#xff0c;下图为效果演示 wordpress子比主题-为图文列表文章封面添加动态缩略图特效 给自己子比主题…

MySQL①——数据库与表格的创建

今日任务&#xff1a; 创建一个名为“db_classes”的数据库 创建一行名为“db_hero”的表 将四大名著中的常见人物插入这个英雄表 数据库的创建与删除 create 命令&#xff08;创建&#xff09;&#xff1a; create database 数据库名&#xff1b;#参数默认create database …

Spring MVC(上)

initApplicationEventMulticaster为上下文初始化 simpleApplicationEventMulticaster怎么处理广播事件的 refisterListeners注册监听器 finishBeanFactoryInitialization初始化非延迟bean 惰性初始化 dispatcherServlet的初始化 servletConfigPropertyValues创建propertyValues…

虚拟化技术 安装并配置ESXi服务器系统

安装并配置ESXi服务器系统 一、实验目的与要求 1.掌握创建VMware ESXi虚拟机 2.掌握安装VMware ESXi系统 3.掌握配置VMware ESXi系统的管理IP 4.掌握开启VMware ESXi的shell和ssh功能的方法 二、实验内容 1.安装VMware workstation 15或更高版本 2.创建VMware ESXi虚拟…