Opencv-C++笔记 (15) : 像素重映射 与 图像扭曲

文章目录

  • 一、重映射简介
  • 二、图像扭曲

一、重映射简介

重映射,就是把一幅图像中某位置的像素放置到另一图像指定位置的过程。即:
在这里插入图片描述
在重映射过程中,图像的大小也可以同时发生改变。此时像素与像素之间的关系就不是一一对应关系,因此在重映射过程中,可能会涉及到像素值的插值计算。

Remap(
InputArray src,       输入图像(灰度图或真彩图均可)
OutputArray dst,       输出图像(要求大小和xmap,ymap相同,通道数目及数据类型和src相同)
InputArray map1,      x 映射表 CV_32FC1/CV_32FC2
InputArray map2,      y 映射表
int interpolation,       选择的插值方法,常见线性插值,可选择立方等
int borderMode,       BORDER_CONSTANT
const Scalar borderValue   color
)

头文件 quick_opencv.h:声明类与公共函数

#pragma once
#include <opencv2\opencv.hpp>
using namespace cv;

class QuickDemo {
public:
	...
	void remap_Demo(Mat& image1);
	void MLS(Mat& src, std::vector<Point> p, std::vector<Point> q);
	void MLS(Mat& src, int* p, int* q, int rows, int cols);
};

主函数调用该类的公共成员函数

#include <opencv2\opencv.hpp>
#include <quick_opencv.h>
#include <iostream>
using namespace cv;


int main(int argc, char** argv) {
	Mat src = imread("D:\\Desktop\\pandas_small22.png");
	if (src.empty()) {
		printf("Could not load images...\n");
		return -1;
	}
	
	QuickDemo qk;
	qk.remap_Demo(src);

	vector<Point> p{
		Point(30, 147), Point(147, 147), Point(268, 147), Point(112, 148),
		Point(186, 148), Point(98, 316), Point(211, 316)
	};
	vector<Point> q{ 
		Point(28, 209), Point(126, 143), Point(282, 26), Point(71, 236), 
		Point(136, 240), Point(79, 313), Point(190, 310)
	};
	qk.MLS(src1, p, q);

	int p_array[7][2] = { {30, 147}, {147, 147}, {268, 147}, {112, 148}, {186, 148}, {98, 316}, {211, 316} };
	int q_array[7][2] = { {28, 209}, {126, 143}, {282, 26},  {71, 236},  {136, 240}, {79, 313}, {190, 310} };
	qk.MLS(src1, (int *)p_array, (int*)q_array, 7, 2);
	waitKey(0);
	destroyAllWindows();
	return 0;
}

源文件 quick_demo.cpp:实现类与公共函数

void update_map(Mat& image, int index, Mat& x_map, Mat& y_map) {
	int height = image.rows;
	int width = image.cols;
	double h_41 = height * 0.25;
	double h_43 = height * 0.75;
	double w_41 = width * 0.25;
	double w_43 = width * 0.75;
	for (int h = 0; h < height; h++) {
		float* x_ptr = x_map.ptr<float>(h);
		float* y_ptr = y_map.ptr<float>(h);
		for (int w = 0; w < width; w++) {
			switch (index)
			{
			case 0:
				if (h > h_41 && h < h_43 && w>w_41 && w < w_43) {
					*x_ptr++ = 2 * (w - w_41 + 0.5);
					*y_ptr++ = 2 * (h - h_41 + 0.5);
				}
				else
				{
					*x_ptr++ = 0;
					*y_ptr++ = 0;
				}
				break;
			case 1:
				*x_ptr++ = width - w - 1;
				*y_ptr++ = h;
				break;
			case 2:
				*x_ptr++ = w;
				*y_ptr++ = height - h - 1;
				break;
			case 3:
				*x_ptr++ = width - w - 1;
				*y_ptr++ = height - h - 1;
				break;
			}
		}
	}

}
void QuickDemo::remap_Demo(Mat& image) {
	Mat dst, x_map, y_map;
	int index = 0;
	x_map.create(image.size(), CV_32FC1);
	y_map.create(image.size(), CV_32FC1);

	
	int c = 0;
	while (true)
	{
		c = waitKey(400);
		if ((char)c==27){
			break;
		}
		index = c % 4;
		update_map(image,index, x_map, y_map);
		remap(image, dst, x_map, y_map, INTER_LINEAR, BORDER_CONSTANT, Scalar(255, 0, 0));
		imshow("remap", dst);
	}
}

如上两个函数,update_map,用于更新remap的具体映射方法,remap_Demo为调用函数。
在这里插入图片描述

二、图像扭曲

MLS算法 图像扭曲 Image Deformation Using Moving Least Squares 论文。
最小二乘法(MLS)对图像进行变形 python 实现
在这里插入图片描述
在这里插入图片描述

Point NewPoint(Point V, vector<Point> p, vector<Point> q){
	vector<float>W;
	Point p_star, q_star = Point(0, 0);
	for (int i = 0; i <= p.size() - 1; i++){
		float temp;
		if (p[i] == V){
			temp = INT_MAX;
		}else{
			temp = 1.0 / (((p[i].x - V.x) * (p[i].x - V.x)) + ((p[i].y - V.y) * (p[i].y - V.y)));
		}
		W.push_back(temp);
	}
	float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;
	for (int i = 0; i <= W.size() - 1; i++){
		px += W[i] * p[i].x;
		py += W[i] * p[i].y;

		qx += W[i] * q[i].x;
		qy += W[i] * q[i].y;
		W_sum += W[i];
	}

	p_star.x = px / W_sum;
	p_star.y = py / W_sum;

	q_star.x = qx / W_sum;
	q_star.y = qy / W_sum;

	vector<Point> p_hat, q_hat;

	for (int i = 0; i <= p.size() - 1; i++){
		p_hat.push_back(p[i] - p_star);
		q_hat.push_back(q[i] - q_star);
	}
	Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pi_hat_t = pi_hat_t_;

	Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> pi_hat = pi_hat_;

	Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_1 = M_1_;


	for (int i = 0; i <= p_hat.size() - 1; i++){
		pi_hat_t.at<float>(0, 0) = p_hat[i].x;
		pi_hat_t.at<float>(1, 0) = p_hat[i].y;

		pi_hat.at<float>(0, 0) = p_hat[i].x;
		pi_hat.at<float>(0, 1) = p_hat[i].y;

		M_1 += pi_hat_t * W[i] * pi_hat;
	}
	Mat_<float> M_1_inv = M_1.inv();
	M_1 = M_1_inv;

	Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pj_hat_t = pj_hat_t_;

	Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> qj_hat = qj_hat_;

	Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_2 = M_2_;

	for (int j = 0; j <= q.size() - 1; j++){
		pj_hat_t.at<float>(0, 0) = p_hat[j].x;
		pj_hat_t.at<float>(1, 0) = p_hat[j].y;
		qj_hat.at<float>(0, 0) = q_hat[j].x;
		qj_hat.at<float>(0, 1) = q_hat[j].y;
		M_2 += W[j] * pj_hat_t * qj_hat;
	}
	Mat_<float> M = M_1 * M_2;//ok
	//cout << "M = " << M << endl;

	Point x_p_star = V - p_star;

	Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_x_p_star = M_x_p_star_;

	M_x_p_star.at<float>(0, 0) = x_p_star.x;
	M_x_p_star.at<float>(0, 1) = x_p_star.y;

	Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_q_star = M_q_star_;

	M_q_star.at<float>(0, 0) = q_star.x;
	M_q_star.at<float>(0, 1) = q_star.y;

	Mat_<float> Lv = M_x_p_star * M + M_q_star;
	return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));
}



void QuickDemo::MLS(Mat& src, std::vector<Point> p, std::vector<Point> q){
    double time0 = static_cast<double>(getTickCount());
	Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
	for (int i = 0; i < src.rows; i++){
		for (int j = 0; j < src.cols; j++){
			Point old = Point(j, i);
			Point new_point = NewPoint(old, p, q);
			//cout << "old = " << old << "\tnew  = " << new_point << endl;

			dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));
		}
	}
    double time1 = static_cast<double>(getTickCount());
	cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;
	imshow("dst_msl", dst);
}

重载函数

Point NewPoint(Point V, float* W, int* p, int* q , float* p_hat, float* q_hat, int rows, int cols) {
	Point p_star, q_star = Point(0, 0);
	float temp = 0;
	float px = 0, py = 0, qx = 0, qy = 0, W_sum = 0;
	for (int i = 0; i < rows; i++) {
		int p_0 = *(p + i * cols);
		int p_1 = *(p + i * cols + 1);
		if (!(p_0 == V.x && p_1 == V.y)) {
			temp = 1.0 / (((p_0 - V.x) * (p_0 - V.x)) + ((p_1 - V.y) * (p_1 - V.y)));
		}else {
			temp = INT_MAX;
		}
		W[i] = temp;
		px += temp * p_0;
		py += temp * p_1;

		qx += temp * (*(q + i * cols));
		qy += temp * (*(q + i * cols + 1));

		W_sum += temp;
	}

	p_star.x = px / W_sum;
	p_star.y = py / W_sum;

	q_star.x = qx / W_sum;
	q_star.y = qy / W_sum;


	for (int i = 0; i < rows; i++) {
		*(p_hat + i * cols) = *(p + i * cols) - p_star.x;
		*(p_hat + i * cols + 1) = *(p + i * cols + 1) - p_star.y;

		*(q_hat + i * cols) = *(q + i * cols) - p_star.x;
		*(q_hat + i * cols + 1) = *(q + i * cols + 1) - p_star.y;
	}

	// ====================================
	Mat pi_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pi_hat_t = pi_hat_t_;

	Mat pi_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> pi_hat = pi_hat_;

	Mat M_1_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_1 = M_1_;

	// ====================================
	Mat pj_hat_t_ = Mat::zeros(2, 1, CV_32FC1);
	Mat_<float> pj_hat_t = pj_hat_t_;

	Mat qj_hat_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> qj_hat = qj_hat_;

	Mat M_2_ = Mat::zeros(2, 2, CV_32FC1);
	Mat_<float> M_2 = M_2_;
	// ====================================
	for (int i = 0; i < rows; i++) {
		float p_hat_x = *(p_hat + i * cols);
		float p_hat_y = *(p_hat + i * cols + 1);

		pi_hat_t.at<float>(0, 0) = p_hat_x;
		pi_hat_t.at<float>(1, 0) = p_hat_y;
		pi_hat.at<float>(0, 0) = p_hat_x;
		pi_hat.at<float>(0, 1) = p_hat_y;
		M_1 += pi_hat_t * W[i] * pi_hat;

		pj_hat_t.at<float>(0, 0) = p_hat_x;
		pj_hat_t.at<float>(1, 0) = p_hat_y;
		qj_hat.at<float>(0, 0) = *(q_hat + i * cols);
		qj_hat.at<float>(0, 1) = *(q_hat + i * cols + 1);
		M_2 += pj_hat_t * W[i] * qj_hat;
	}
	Mat_<float> M_1_inv = M_1.inv();
	M_1 = M_1_inv;

	Mat_<float> M = M_1 * M_2;

	//=====================================
	//
	// 	  如下为总公式计算
	//
	//======================================

	Point x_p_star = V - p_star;

	Mat M_x_p_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_x_p_star = M_x_p_star_;

	M_x_p_star.at<float>(0, 0) = x_p_star.x;
	M_x_p_star.at<float>(0, 1) = x_p_star.y;

	Mat M_q_star_ = Mat::zeros(1, 2, CV_32FC1);
	Mat_<float> M_q_star = M_q_star_;

	M_q_star.at<float>(0, 0) = q_star.x;
	M_q_star.at<float>(0, 1) = q_star.y;

	Mat_<float> Lv = M_x_p_star * M + M_q_star;
	return Point(Lv.at<float>(0, 0), Lv.at<float>(0, 1));

}


void QuickDemo::MLS(Mat& src, int* p, int* q, int rows, int cols) {
	double time0 = static_cast<double>(getTickCount());
	Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
	assert(7 == rows);               // 若断言失败请修改如下三个数组的长度为rows
	float W[7] = { 0 };              // 权重长度为p数组长度:rows=7
	float p_hat[7][2] = { 0 };       // p_hat长度为p数组长度:rows=7
	float q_hat[7][2] = { 0 };       // q_hat长度为p数组长度:rows=7
	for (int i = 0; i < src.rows; i++) {
		for (int j = 0; j < src.cols; j++) {
			Point new_point = NewPoint(Point(j, i), W, p, q, (float*)p_hat, (float*)p_hat, rows, cols);
			//cout << "old = " << old << "\tnew  = " << new_point << endl;

			dst.at<Vec3b>(i, j) = src.at<Vec3b>(abs(new_point.y), abs(new_point.x));
			//cout << "src.at<uchar> = " << src.at<Vec3b>(new_point.y,new_point.x) << endl;
		}
	}
	double time1 = static_cast<double>(getTickCount());
	cout << "Total cost time is " << ((time1 - time0) / getTickFrequency()) << "seconds" << endl;
	imshow("dst_msl", dst);
}
————

在这里插入图片描述
鸣谢与拓展阅读:
使用范例 记录四图像处理之瘦脸 MLS算法 C++实现
OpenCV局部变形算法探究添加链接描述
基于移动最小二乘(MLS)的图像扭曲刚性变形python实现
使用重映射实现图像的局部扭曲 来实现 图像增强。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PHP从入门到精通—PHP开发入门-PHP概述、PHP开发环境搭建、PHP开发环境搭建、第一个PHP程序、PHP开发流程

每开始学习一门语言&#xff0c;都要了解这门语言和进行开发环境的搭建。同样&#xff0c;学生开始PHP学习之前&#xff0c;首先要了解这门语言的历史、语言优势等内容以及了解开发环境的搭建。 PHP概述 认识PHP PHP最初是由Rasmus Lerdorf于1994年为了维护个人网页而编写的一…

租赁类小程序定制开发|租赁管理系统源码|免押租赁系统开发

随着互联网的发展&#xff0c;小程序成为了一种重要的移动应用开发方式。租赁小程序作为其中的一种类型&#xff0c;可以为很多行业提供便利和创新。下面我们将介绍一些适合开发租赁小程序的行业。   房屋租赁行业&#xff1a;租房小程序可以帮助房东和租户快速找到合适的租赁…

对当下AI的一些观感思考

目前来看&#xff0c;AI技术地震的震中还是在美帝那旮瘩。尤其是M7&#xff0c;这几家市值加总快15万亿美元了&#xff0c;个个都是行业翘楚&#xff0c;个个都有拿得出手的东西。AI是个技术密集、人才密集、计算密集的产业。美帝拥有全球一流的顶尖人才&#xff0c;以及财力、…

IntelliJ IDEA 2023.2社区版插件汇总

参考插件帝&#xff1a;https://gitee.com/zhengqingya/java-developer-document 突发小技巧&#xff1a;使用插件时要注意插件的版本兼容性&#xff0c;并根据自己的实际需求选择合适的插件。同时&#xff0c;不要过度依赖插件&#xff0c;保持简洁和高效的开发环境才是最重要…

2023下半年软考初级程序员报名入口-报名流程-备考方法

软考初级程序员2023下半年考试时间&#xff1a; 2023年下半年软考初级程序员的考试时间为11月4日、5日。考试时间在全国各地一致&#xff0c;建议考生提前备考。共分两科&#xff0c;第一科基础知识考试具体时间为9:00到11:30&#xff1b;第二科应用技术考试具体时间为2:00到4…

STM32 低功耗-睡眠模式

STM32 睡眠模式 文章目录 STM32 睡眠模式第1章 低功耗模式简介第2章 睡眠模式简介2.1 进入睡眠模式2.1 退出睡眠模式 第3章 睡眠模式代码示例总结 第1章 低功耗模式简介 在 STM32 的正常工作中&#xff0c;具有四种工作模式&#xff1a;运行、睡眠、停止和待机模式。 在系统或…

小白到运维工程师自学之路 第六十四集 (dockerfile构建tomcat、mysql、lnmp、redis镜像)

一、tomcat&#xff08;更换jdk&#xff09; mkdir tomcat cd tomcat/ tar xf jdk-8u191-linux-x64.tar.gz tar xf apache-tomcat-8.5.40.tar.gzvim Dockerfile FROM centos:7 MAINTAINER Crushlinux <syh163.com> ADD jdk1.8.0_191 /usr/local/java ENV JAVA_HOME /us…

AcWing257. 关押罪犯(二分图+染色法)

输入样例&#xff1a; 4 6 1 4 2534 2 3 3512 1 2 28351 1 3 6618 2 4 1805 3 4 12884输出样例&#xff1a; 3512 解析&#xff1a; 二分&#xff0c;每次查看是否是二分图 #include<bits/stdc.h> using namespace std; typedef long long ll; const int N2e45,M2e55…

《Spring Boot源码解读与原理分析》书籍推荐

Spring Boot 1.0.0 早在2014年就已经发布&#xff0c;只不过到了提倡“降本增效”的今天&#xff0c;Spring Boot才引起了越来越多企业的关注。Spring Boot是目前Java EE开发中颇受欢迎的框架之一。依托于底层Spring Framework的基础支撑&#xff0c;以及完善强大的特性设计&am…

使用 Go 语言实现二叉搜索树

原文链接&#xff1a; 使用 Go 语言实现二叉搜索树 二叉树是一种常见并且非常重要的数据结构&#xff0c;在很多项目中都能看到二叉树的身影。 它有很多变种&#xff0c;比如红黑树&#xff0c;常被用作 std::map 和 std::set 的底层实现&#xff1b;B 树和 B 树&#xff0c;…

前端实现打印1 - 使用 iframe 实现 并 分页打印

目录 打印代码对话框预览打印预览 打印代码 <!-- 打印 --> <template><el-dialogtitle"打印":visible.sync"dialogVisible"width"50%"top"7vh"append-to-bodyclose"handleClose"><div ref"print…

uni-app uView自定义底部导航栏

因项目需要自定义底部导航栏&#xff0c;我把它写在了组件里&#xff0c;基于uView2框架写的&#xff08;vue2&#xff09;&#xff1b; 一、代码 在components下创建tabbar.vue文件&#xff0c;代码如下&#xff1a; <template><view><u-tabbar :value"c…

推荐一款非常简单实用的数据库连接工具Navicat Premium

Navicat Premium是一款非常实用的数据库连接工具&#xff0c;别再用HeidiSQL和idea自带的数据库连接了&#xff0c;看完这篇文章&#xff0c;赶紧把Navicat Premium用起来吧。 首先&#xff0c;需要获取Navicat Premium的安装包&#xff0c;可以通过以下网盘链接下载&#xff0…

刷题笔记 day5

力扣 202 快乐数 首先来分析什么样的数是快乐数&#xff0c; 解题思路&#xff1a; 1&#xff09;定义快慢指针 &#xff1b; 2&#xff09;快指针走两步&#xff0c;慢指针走一步 &#xff1b;3&#xff09;两个指针相遇时判断相遇的数值是否为1。 怎样处理 取各分位数的平…

力扣初级算法(二分查找)

力扣初级算法(二分法)&#xff1a; 每日一算法&#xff1a;二分法查找 学习内容&#xff1a; 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 2.二分查找流程&…

SystemVerilog scheduler

文章目录 简介调度器simulation regionPreponed regionActive regionInactive regionNBA(Non-blocking Assignment Events region)Observed regionReactive regionRe-Inactive Events regionRe-NBA RegionPostponed Region PLI region:Pre-active regionPre-NBA regionPost-NBA…

常见的设计模式(超详细)

文章目录 单例模式饿汉式单例模式懒汉式单例模式双重检索单例模式 工厂模式简单工厂模式工厂&#xff08;方法&#xff09;模式抽象工厂模式 原型模式代理模式 单例模式 确保一个类只有一个实例&#xff0c;并且自行实例化并向整个系统提供这个实例。 饿汉式单例模式 饿汉式单…

【React学习】—虚拟DOM两种创建方式(二)

【React学习】—虚拟DOM两种创建方式&#xff08;二&#xff09; 一、Hello React案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, init…

spring-boot-maven-plugin使用

spring-boot-maven-plugin这个插件有7个目标&#xff1a; spring-boot:build-image 使用构建包将应用程序打包到OCI映像中。 spring-boot:build-info 根据当前MavenProject spring-boot:help 显示有关spring-boot-maven插件的帮助信息。 调用mvn-spring-boot:help-Ddetailtr…

后端进阶之路——浅谈Spring Security用户、角色、权限和访问规则(三)

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★前端炫酷代码分享 ★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ 解决算法&#xff0c;一个专栏就够了★ ★ 架…