【数学建模】2024五一数学建模C题完整论文代码更新

最新更新:2024五一数学建模C题 煤矿深部开采冲击地压危险预测:建立基于多域特征融合与时间序列分解的信号检测与区间识别模型完整论文已更新

2024五一数学建模题完整代码和成品论文获取↓↓↓↓↓

https://www.yuque.com/u42168770/qv6z0d/gyoz9ou5upvkv6nx?singleDoc#

2024五一数学建模C题 煤矿深部开采冲击地压危险预测:建立基于多域特征融合与时间序列分解的信号检测与区间识别模型。

A题和B题思路代码论文也已经更新,可见文末参考

本文文章较长,建议先看目录,完整文章参考可见文末

经过不懈的努力,2024五一数学建模C题48页完整论文和代码已完成,代码为C题全部问题的代码,论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解(问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求解)、模型的评价等等,文章的目录如下

摘要

摘要略

问题分析

首先是对2024五一数学建模的C题的问题分析,如下:

问题1分析

根据附件1中给出的2019年1月9日至2020年1月7日期间采集的电磁辐射和声发射数据,以及对应的数据类型标记,可以提取出干扰信号数据的一些典型特征。例如,可以分析干扰信号的振幅、频率、持续时间、周期性等特征,看它们与正常信号有何区别。还可以研究干扰信号前后的信号变化情况,探索识别干扰信号的新方法。通过对这些特征的分析和建模,可以给出至少3个识别干扰信号的显著特征。

在问题(1.2)中,需要利用问题(1.1)中得到的干扰信号特征,对2022年的部分电磁辐射和声发射信号数据进行分析,识别并给出最早发生的5个干扰信号所在的时间区间。这需要将特征量化,设计识别算法,遍历所有数据,一旦发现符合干扰信号特征的区间,即记录下来。由于需要分别对电磁辐射和声发射信号进行处理,可以分别建立不同的模型,也可以尝试建立一个统一的模型。最终需要将识别出的时间区间整理到表1和表2中。处理好干扰信号是进行后续分析的基础和前提 。

问题2分析

对于该问题,首先需要建立模型分析前兆特征信号的变化趋势及其它特征。根据题目中的说明和图2的示意图,前兆特征信号呈现出一种周期性增大的变化趋势,这是其最显著的特征。但除此之外,还可以进一步分析信号的其他统计特征,如方差、波动范围、极值等,看它们与正常工作信号有何区别。同时还可以尝试对信号进行时频域分析,从频域角度去识别前兆特征。通过模型分析和总结,给出至少3个可用于识别前兆特征信号的特征。

在问题(2.2)中,需要利用问题(2.1)中得到的前兆特征识别特征,对2020年、2021年和2022年的部分电磁辐射和声发射信号数据进行分析,分别识别出最早发生的5个前兆特征信号所在的时间区间,并将结果填入表3和表4中。这一过程需要遍历所有数据,一旦发现符合前兆特征的区间,即记录下来。前兆特征识别对于及时发现潜在的冲击地压风险至关重要,是确保煤矿安全生产的关键。

问题3分析

针对这一问题,需要基于问题2中获得的前兆特征识别模型,对每个时间点采集到的数据进行实时分析。根据信号数据的统计特征、变化趋势等,判断它们是否已经符合前兆特征的定义和特征,若符合则视为已经出现了前兆特征。由于仅有单个时间点的数据,难以从趋势角度判断,因此需要设计更精细的识别策略,如滑动窗口分析等。同时还需要将判断结果量化为发生概率的形式。

在附件3中给出了一些非连续时间段的电磁辐射和声发射信号数据。针对每个时间段的最后一个时间点,需要应用上述模型和方法,分别计算出该时刻出现前兆特征的概率,并将结果填入表5中。由于仅给出了单个时间点数据,其发生概率计算的难度会比较大,需要设计更为精细的方法进行评估。这一问题反映了实时预警的重要性,通过对每个时间点风险状态的评估,可以尽早发现异常并作出反应。

模型假设

下面是2024五一建模C题的模型假设:本文问题1到问题3的模型建立与求解过程中使用的主要模型假设如下:

  1. 在问题1中,我们针对干扰信号特征提取任务,提出了一种基于时域、频域和时频域特征融合的模型。该模型的主要假设包括:

  2. 干扰信号在时域、频域和时频域上都有独特的特征表现,通过融合这三个域的特征,可以全面刻画干扰信号的特性,提高识别的准确性。

  3. 时域统计特征(如最大值、均值、标准差等)可以反映信号的幅值分布特性。

  4. 频域特征(如频谱熵和频谱重心)可以刻画信号在频域的能量分布特性。

  5. 时频域特征(如小波分解系数的统计量)可以刻画信号在时间-频率平面上的能量分布特性。

  6. 通过滑动窗口分段和特征标准化,可以提高特征提取的效率和模型的性能。

  7. 在问题1中,我们提出了一种基于支持向量机(SVM)和滑动窗口的干扰信号检测模型。该模型的主要假设包括:

  8. (后略,完整见文末参考)

符号说明

论文中问题1到问题3的模型建立与求解过程中使用的主要符号及其说明如下(部分,完整见文末参考)。

问题一模型的建立与求解

下面是2024年五一数学建模竞赛C题具体的模型建立过程:

数据预处理与可视化

在问题1的模型建立和求解过程中,需要对原始电磁辐射和声发射数据进行预处理和可视化,以提高数据质量和增强对数据的理解。具体的预处理和可视化方法如下:

数据预处理方法:

1) 去噪处理:原始数据中可能存在噪声和异常值,需要进行去噪处理。常用的去噪方法包括小波变换去噪、中值滤波、卡尔曼滤波等。通过这些方法可以有效去除高频噪声和孤立的异常点,提高数据的信噪比。 2) 插值处理:由于各种原因,原始数据可能存在缺失值或断层。为了保证数据的连续性和完整性,需要使用插值方法对缺失值进行估计和填充。常用的插值方法包括线性插值、三次样条插值、最近邻插值等。

数据可视化方法:

1) 时间序列可视化:将预处理后的电磁辐射和声发射数据绘制为时间序列图,直观展示数据在时间上的变化趋势和特征。可以使用不同颜色或线型区分不同类别的数据,如正常工作数据、前兆特征数据、干扰信号数据等。

  1. 散点图可视化:将不同类别的数据在同一坐标系中用散点的形式绘制出来,可以直观地观察到不同类别数据在数值分布上的差异,有助于理解它们的特征区分度。

多域特征融合模型建立

针对问题1.1,即识别电磁辐射和声发射信号中的干扰信号并提取其特征,我们提出了一种基于时域、频域和时频域特征融合的干扰信号特征提取方法。下面给出详细的分析与建模过程:

干扰信号特征选择与提取思路分析

干扰信号在时域、频域和时频域上都有其独特的特征表现。为了全面刻画干扰信号的特性,我们从这三个域中提取有区分度的特征。

在时域上,干扰信号通常表现为突发的高幅值脉冲或异常的波形,与正常信号有明显差异。因此,我们可以提取时域统计特征,如最大值、最小值、均值、标准差、偏度和峰度等,来刻画信号的幅值分布特性。

在频域上,干扰信号的频谱分布可能与正常信号不同。通过对信号进行频谱分析,提取频域统计特征,如频谱熵和频谱重心等,可以刻画信号在频域的能量分布特性。

在时频域上,干扰信号的时频能量分布可能更加集中或散乱。采用小波变换等时频分析工具,提取时频域特征,如小波系数的统计特征等,可以刻画信号在时间-频率平面上的能量分布特性。

基于上述分析,我们选择从时域、频域和时频域三个方面提取特征,构建一个全面的干扰信号特征集合。通过特征融合,可以充分利用不同域的信息,提高干扰信号识别的准确性。

多域特征融合模型建立

针对干扰信号特征提取问题,我们提出了一种多域特征融合模型。该模型通过滑动窗口对时间序列数据进行分段,在每个窗口内提取时域、频域和时频域特征,并将它们融合为一个高维特征向量。

干扰信号特征提取算法步骤

基于多域特征融合模型,干扰信号特征提取的主要步骤如下:

(略,完整见文末参考)

通过以上步骤,可以从时间序列数据中提取出一系列多域融合特征向量,用于后续的干扰信号识别任务。通过以上数学公式,我们定义了14个多域特征,包括6个时域特征、2个频域特征和6个时频域特征。这些特征从不同角度刻画了信号的时间、频率和时频特性,提供了全面的信号表示。

在特征提取过程中,我们使用滑动窗口对时间序列数据进行分段,在每个窗口内计算这14个特征,形成一个特征向量。通过滑动窗口,我们可以获得一系列特征向量,每个特征向量对应一个数据片段。这种滑动窗口的方式可以捕捉信号的局部特征,同时考虑了时间的连续性。提取的特征可以用于后续的干扰信号识别任务,如训练分类器、异常检测等。通过融合多域特征,我们可以更全面地刻画干扰信号的特性,提高识别的准确性和可靠性。

综上所述,我们提出了一种基于多域特征融合的干扰信号特征提取方法。该方法结合了时域、频域和时频域的特征,通过滑动窗口对时间序列数据进行分段,在每个窗口内提取14个多域特征,形成特征向量。这种方法可以全面刻画干扰信号的特性,为后续的干扰信号识别任务提供有效的特征表示。同时,我们给出了特征提取的数学公式和解释,明确了每个特征的物理意义和计算方式。通过标准化处理,我们可以消除特征之间的量纲差异,使得特征对分类器的贡献更加平衡。

综上,干扰信号特征提取是干扰信号识别的关键步骤,直接影响识别的性能。本文提出的多域特征融合方法,结合了时域、频域和时频域的特征,提供了全面的信号表示。通过滑动窗口和特征标准化等技术,我们可以有效地提取干扰信号的特征,为后续的识别任务奠定基础。

# 可视化EMR数据
plt.figure(figsize=(10, 5))
colors = {'A': 'blue', 'B': 'green', 'C': 'red', 'D/E': 'gray'}
for category in emr_data['类别 (class)'].unique():
    data = emr_data[emr_data['类别 (class)'] == category]
    plt.scatter(data['时间 (time)'], data['电磁辐射 (EMR)'], c=colors[category], label=category, s=10)
plt.xlabel('时间')
plt.ylabel('电磁辐射')
plt.title('EMR数据可视化')
plt.legend()
plt.xticks(rotation=45)
plt.show()


# 可视化AE数据
plt.figure(figsize=(10, 5))
for category in ae_data['类别 (class)'].unique():
    data = ae_data[ae_data['类别 (class)'] == category]
    plt.scatter(data['时间 (time)'], data['声波强度 (AE)'], c=colors[category], label=category, s=10)
plt.xlabel('时间')
plt.ylabel('声波强度')
plt.title('AE数据可视化')
plt.legend()
plt.xticks(rotation=45)
plt.show()


# 提取EMR干扰信号特征
def extract_emr_features(data):
    features = []

    # 时域特征
    max_value = np.max(data)
    min_value = np.min(data)
    mean_value = np.mean(data)
    std_value = np.std(data)
    skewness = skew(data)
    kurtosis_value = kurtosis(data)

    # 频域特征
(略,完整见文末参考)
    # 时频域特征
    coeffs = pywt.wavedec(data, 'db4', level=5)
    wavelet_std = [np.std(coeff) for coeff in coeffs]

    features.extend([max_value, min_value, mean_value, std_value, skewness, kurtosis_value,
                     spectral_entropy, spectral_centroid] + wavelet_std)

    return features

基于支持向量机(SVM)和滑动窗口的干扰信号检测模型

2024年五一数学建模C题问题1.2模型建立:针对问题1.2,即识别电磁辐射和声发射信号中干扰信号所在的时间区间,我们提出了一种基于支持向量机(SVM)和滑动窗口的干扰信号检测方法。下面给出详细的分析与建模过程:

问题分析与思路

在实际应用中,干扰信号通常呈现出突发性、持续性或周期性等特点,与正常信号在时域、频域和时频域上都有明显差异。因此,我们可以将干扰信号检测问题转化为时间序列异常检测问题,即从时间序列数据中识别出异常区间。

为了实现干扰信号的精确定位,我们采用滑动窗口的方式对时间序列数据进行局部分析。具体思路如下:

  1. 特征提取:使用滑动窗口对时间序列数据进行分段,在每个窗口内提取多域特征,包括时域统计特征、频域特征和时频域特征等,形成特征向量。

  2. 模型训练:将提取的特征向量和对应的标签(正常或干扰)作为训练数据,使用SVM算法训练二分类模型。SVM通过寻找最大间隔超平面,对特征空间进行划分,实现异常区间的判别。

  3. 滑动检测:使用训练好的SVM模型,对测试数据进行滑动窗口检测。对每个滑动窗口提取特征向量,并使用SVM模型进行分类,判断该窗口是否为干扰信号。

  4. 区间合并:将连续的异常窗口合并为干扰信号区间,得到干扰信号的起始时间和结束时间。

通过以上步骤,我们可以实现干扰信号的精确定位,确定其在时间序列数据中的位置和持续时间。

支持向量机(SVM)模型建立

支持向量机(SVM)是一种经典的二分类模型,通过在特征空间中寻找最大间隔超平面,将不同类别的样本分开。在本问题中,我们使用SVM模型来实现干扰信号的判别。

完整版见↓↓↓↓↓

2024五一数学建模题完整代码和成品论文获取↓↓↓↓↓

https://www.yuque.com/u42168770/qv6z0d/gyoz9ou5upvkv6nx?singleDoc#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/589772.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

hive分区上传数据

hive分区上传数据 目录 hive分区上传数据 一、开启HIVE中分区表支持中文字段 二、分区表操作 1.建表语句 2.分区表插入数据 3.查询分区 4.删除分区 5.恢复被删除分区 6.添加分区 7.创建多级分区(插入数据与单级分区类似) 一、开启HIVE中分区表支…

探索高级聚类技术:使用LLM进行客户细分

在数据科学领域,客户细分是理解和分析客户群体的重要步骤。最近,我发现了一个名为“Clustering with LLM”的GitHub仓库,它由Damian Gil Gonzalez创建,专门针对这一领域提供了一些先进的聚类技术。在这篇文章中,我将概…

Linux下top命令指标说明

目录 Linux下top命令指标说明1. 概览2. CPU利用率3. 内存利用率4. 进程信息 Linux下top命令指标说明 在Linux系统中,top 命令是一个用于实时监视系统运行状态的工具。通过 top 命令,我们可以了解系统的负载情况、CPU利用率、内存使用情况以及各个进程的…

cmake的使用方法: 多个源文件的编译

一. 简介 前面一篇文章学习了针对只有一个 .c源文件,如何编写 CMakeLists.txt内容,从而使用 cmake工具如何编译工程。文章如下: cmake的使用方法: 单个源文件的编译-CSDN博客 本文学习针对 多个 .c源文件, CMakeLists.txt文件如…

【算法设计与分析】实验报告c++实现(矩阵链相乘问题、投资问题、背包问题、TSP问题、数字三角形)

一、实验目的 1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握; 2.提高学生利用课堂所学知识解决实际问题的能力; 3.提高学生综合应用所学知识解决实际问题的能力。 二、实验任务 1、…

Mac环境下ollama部署和体验

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 关于ollama ollama和LLM(大型语言模型)的关系,类似于docker和镜像,可以在ollama服务中管理和运行各种LLM&…

Java | Leetcode Java题解之第63题不同路径II

题目&#xff1a; 题解&#xff1a; class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int n obstacleGrid.length, m obstacleGrid[0].length;int[] f new int[m];f[0] obstacleGrid[0][0] 0 ? 1 : 0;for (int i 0; i < n; i) {for (i…

spring boot学习第十八篇:使用clickhouse

1、pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://…

Vitis HLS 学习笔记--MAXI手动控制突发传输

目录 1. 简介 2. MAXI 突发传输详解 2.1 突发传输的前置条件 2.2 hls::burst_maxi 详解 2.2.1 基本知识 2.2.2 hls::burst_maxi 构造函数 2.2.3 hls::burst_maxi 读取方法 2.2.4 hls::burst_maxi 写入方法 2.3 示例一 2.4 示例二 3. 总结 1. 简介 这篇文章探讨了在…

win11 Terminal 部分窗口美化

需求及分析&#xff1a;因为在 cmd、anaconda prompt 窗口中输入命令较多&#xff0c;而命令输入行和输出结果都是同一个颜色&#xff0c;不易阅读&#xff0c;故将需求定性为「美化窗口」。 美化结束后&#xff0c;我在想是否能不安装任何软件&#xff0c;简单地通过调整主题颜…

前端高频算法

分析算法排序&#xff1a; 时间复杂度: 一个算法执行所耗费的时间。 空间复杂度: 运行完一个程序所需内存的大小。 执行效率、内存消耗、稳定性 三方面入手。 1. 排序 1.1 冒泡排序 冒泡的过程只涉及相邻数据的交换操作&#xff0c;所以它的空间复杂度为 O(1)。 为了保证…

详细设计(上)

结构程序化 三种基本控制结构 其他常用控制结构 人机界面设计 三条“黄金规则” 1、置用户于控制之下 2、减少用户记忆负担 3、保持界面一致 设计问题 设计人机界面过程中会遇到的4个问题&#xff1a; 1、系统响应时间 2、用户帮助设施 3、出错信息处理 4、命令交互 设计过…

每日算法之二叉树的层序遍历

题目描述 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]] 示例 2&#…

tensorflow报错

参考 TensorFlow binary is optimized to use available CPU instructions in performance-critical operations._this tensorflow binary is optimized to use availab-CSDN博客 解决Python中cuBLAS插件无法注册问题_unable to register cudnn factory: attempting to re-CS…

采用“3+1”模式,开展新部门组建的各项工作解决思路

【背景】 A公司成立于2000年&#xff0c;位于浙江省杭州市&#xff0c;是一家大中型即将上市的公司&#xff0c;近年来发展一直不错&#xff1b;同时A公司还有另外一个产业是国家级公共服务平台&#xff0c;由“1平台”、“6中心”构成&#xff0c;主要围绕园区及区域做服务。…

搭建智能客服机器人设计流程

一、检索型机器人FAQ-Bot 在客服处理的问题中70%都是简单的问答业务&#xff0c;只要找到QA知识库中与用户当前问句语义最相近的标准问句&#xff0c;取出答案给用户就可以了。FAQ-Bot就是处理这类问题的。在没有使用深度学习算法之前&#xff0c;通常采用检索NLP技术处理。 …

深入图像分类:使用美国手语数据集训练定制化神经网络

引言 在前一篇博客中&#xff0c;我们探讨了如何使用MNIST数据集训练一个基础的神经网络来进行手写数字识别。在本文中&#xff0c;我们将更进一步&#xff0c;使用美国手语字母表&#xff08;ASL&#xff09;数据集来构建一个定制化的图像分类模型。通过这个过程&#xff0c;…

免费通配符证书的申请指南——从申请到启动https

如果您的网站拥有众多二级子域名&#xff0c;那么通配符证书证书是最好的选择。 免费通配符申请流程如下&#xff1a; 1 创建证书服务商账号 首先选择一个提供免费通配符的服务商&#xff0c;打开国产服务商JoySSL官网&#xff0c;创建一个账号&#xff08;注册账号时填写注册…

分享自己一篇在亚马逊云科技AWS官网发的Blog技术文章

小李哥在亚马逊AWS官网&#xff0c;作为第一作者发了自己的第一篇AWS Blog文章&#xff0c;也是自己今年在AWS官网的第11篇文章。文章主要内容是描述为出海的金融企业&#xff0c;搭建满足PCI-DSS合规、FIPS 140-2 Level 3安全标准的传输中数据加密云端方案&#xff0c;主要用于…

CSS优惠券、卡券样式绘制

实现左右凹陷中间有虚线效果 效果图 实现思路 从效果图可以看到这个优惠券是左右两边凹陷&#xff0c;中间还有一条虚线&#xff0c;为了封装后插槽使用方便&#xff0c;把优惠券以虚线为准分了两部分。这样布局的好处是上部分内容和下部分都可以自定义&#xff0c;不受内容限…