解决RTC内核驱动的问题bm8563

常用pcf-8563 , 国产平替BM8563(驱动管脚一致);

        实时时钟是很常用的一个外设,通过实时时钟我们就可以知道年、月、日和时间等信息。
因此在需要记录时间的场合就需要实时时钟,可以使用专用的实时时钟芯片来完成此功能
        
        RTC 设备驱动是一个标准的字符设备驱动,应用程序通过 open release read write ioctl 等函数完成对 RTC 设备的操作

测试平台:君正x2600;

makefile文件:

# 开发板Linux内核的实际路径 
# KDIR变量
KDIR:=/mnt/new_disk/x2600_linux/src/kernel/kernel/

#  获取当前目录
PWD:=$(shell pwd)

# obj-m表示将 chrdevbase.c这个文件 编译为 chrdevbase.ko模块。
obj-m += rtc-bm8563.o

# 编译成模块
all:
	make -C $(KDIR) M=$(PWD) modules

clean:
	make -C $(KDIR) M=$(PWD) clean

驱动编译代码:

// SPDX-License-Identifier: GPL-2.0-only
/*
 * An I2C driver for the Philips BM8563 RTC
 * Copyright 2005-06 Tower Technologies
 *
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 * Maintainers: http://www.nslu2-linux.org/
 *
 * based on the other drivers in this same directory.
 *
 * http://www.semiconductors.philips.com/acrobat/datasheets/BM8563-04.pdf
 */

#include <linux/clk-provider.h>
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/of_gpio.h>

#define BM8563_REG_ST1		0x00 /* status */
#define BM8563_REG_ST2		0x01
#define BM8563_BIT_AIE		BIT(1)
#define BM8563_BIT_AF		BIT(3)
#define BM8563_BITS_ST2_N	(7 << 5)

#define BM8563_REG_SC		0x02 /* datetime */
#define BM8563_REG_MN		0x03
#define BM8563_REG_HR		0x04
#define BM8563_REG_DM		0x05
#define BM8563_REG_DW		0x06
#define BM8563_REG_MO		0x07
#define BM8563_REG_YR		0x08

#define BM8563_REG_AMN		0x09 /* alarm */

#define BM8563_REG_CLKO		0x0D /* clock out */
#define BM8563_REG_CLKO_FE		0x80 /* clock out enabled */
#define BM8563_REG_CLKO_F_MASK		0x03 /* frequenc mask */
#define BM8563_REG_CLKO_F_32768HZ	0x00
#define BM8563_REG_CLKO_F_1024HZ	0x01
#define BM8563_REG_CLKO_F_32HZ		0x02
#define BM8563_REG_CLKO_F_1HZ		0x03

#define BM8563_REG_TMRC	0x0E /* timer control */
#define BM8563_TMRC_ENABLE	BIT(7)
#define BM8563_TMRC_4096	0
#define BM8563_TMRC_64		1
#define BM8563_TMRC_1		2
#define BM8563_TMRC_1_60	3
#define BM8563_TMRC_MASK	3

#define BM8563_REG_TMR		0x0F /* timer */

#define BM8563_SC_LV		0x80 /* low voltage */
#define BM8563_MO_C			0x80 /* century */

static struct i2c_driver bm8563_driver;

struct bm8563 {
	struct rtc_device *rtc;
	/*
	 * The meaning of MO_C bit varies by the chip type.
	 * From BM8563 datasheet: this bit is toggled when the years
	 * register overflows from 99 to 00
	 *   0 indicates the century is 20xx
	 *   1 indicates the century is 19xx
	 * From RTC8564 datasheet: this bit indicates change of
	 * century. When the year digit data overflows from 99 to 00,
	 * this bit is set. By presetting it to 0 while still in the
	 * 20th century, it will be set in year 2000, ...
	 * There seems no reliable way to know how the system use this
	 * bit.  So let's do it heuristically, assuming we are live in
	 * 1970...2069.
	 */
	int c_polarity;	/* 0: MO_C=1 means 19xx, otherwise MO_C=1 means 20xx */

	struct i2c_client *client;
#ifdef CONFIG_COMMON_CLK
	struct clk_hw		clkout_hw;
#endif
};

static int bm8563_read_block_data(struct i2c_client *client, unsigned char reg,
				   unsigned char length, unsigned char *buf)
{
	struct i2c_msg msgs[] = {
		{/* setup read ptr */
			.addr = client->addr,
			.len = 1,
			.buf = &reg,
		},
		{
			.addr = client->addr,
			.flags = I2C_M_RD,
			.len = length,
			.buf = buf
		},
	};

	if ((i2c_transfer(client->adapter, msgs, 2)) != 2) {
		dev_err(&client->dev, "%s: read error\n", __func__);
		return -EIO;
	}

	return 0;
}

static int bm8563_write_block_data(struct i2c_client *client,
				   unsigned char reg, unsigned char length,
				   unsigned char *buf)
{
	int i, err;

	for (i = 0; i < length; i++) {
		unsigned char data[2] = { reg + i, buf[i] };

		err = i2c_master_send(client, data, sizeof(data));
		if (err != sizeof(data)) {
			dev_err(&client->dev,
				"%s: err=%d addr=%02x, data=%02x\n",
				__func__, err, data[0], data[1]);
			return -EIO;
		}
	}

	return 0;
}

static int bm8563_set_alarm_mode(struct i2c_client *client, bool on)
{
	unsigned char buf;
	int err;

	err = bm8563_read_block_data(client, BM8563_REG_ST2, 1, &buf);
	if (err < 0)
		return err;

	if (on)
		buf |= BM8563_BIT_AIE;
	else
		buf &= ~BM8563_BIT_AIE;

	buf &= ~(BM8563_BIT_AF | BM8563_BITS_ST2_N);

	err = bm8563_write_block_data(client, BM8563_REG_ST2, 1, &buf);
	if (err < 0) {
		dev_err(&client->dev, "%s: write error\n", __func__);
		return -EIO;
	}

	return 0;
}

static int bm8563_get_alarm_mode(struct i2c_client *client, unsigned char *en,
				  unsigned char *pen)
{
	unsigned char buf;
	int err;

	err = bm8563_read_block_data(client, BM8563_REG_ST2, 1, &buf);
	if (err)
		return err;

	if (en)
		*en = !!(buf & BM8563_BIT_AIE);
	if (pen)
		*pen = !!(buf & BM8563_BIT_AF);

	return 0;
}

static irqreturn_t bm8563_irq(int irq, void *dev_id)
{
	struct bm8563 *bm8563 = i2c_get_clientdata(dev_id);
	int err;
	char pending;

	err = bm8563_get_alarm_mode(bm8563->client, NULL, &pending);
	if (err)
		return IRQ_NONE;

	if (pending) {
		rtc_update_irq(bm8563->rtc, 1, RTC_IRQF | RTC_AF);
		bm8563_set_alarm_mode(bm8563->client, 1);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

/*
 * In the routines that deal directly with the bm8563 hardware, we use
 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
 */
static int bm8563_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct bm8563 *bm8563 = i2c_get_clientdata(client);
	unsigned char buf[9];
	int err;

	err = bm8563_read_block_data(client, BM8563_REG_ST1, 9, buf);
	if (err)
		return err;

	if (buf[BM8563_REG_SC] & BM8563_SC_LV) {
		dev_err(&client->dev,
			"low voltage detected, date/time is not reliable.\n");
		return -EINVAL;
	}

	dev_dbg(&client->dev,
		"%s: raw data is st1=%02x, st2=%02x, sec=%02x, min=%02x, hr=%02x, "
		"mday=%02x, wday=%02x, mon=%02x, year=%02x\n",
		__func__,
		buf[0], buf[1], buf[2], buf[3],
		buf[4], buf[5], buf[6], buf[7],
		buf[8]);


	tm->tm_sec = bcd2bin(buf[BM8563_REG_SC] & 0x7F);
	tm->tm_min = bcd2bin(buf[BM8563_REG_MN] & 0x7F);
	tm->tm_hour = bcd2bin(buf[BM8563_REG_HR] & 0x3F); /* rtc hr 0-23 */
	tm->tm_mday = bcd2bin(buf[BM8563_REG_DM] & 0x3F);
	tm->tm_wday = buf[BM8563_REG_DW] & 0x07;
	tm->tm_mon = bcd2bin(buf[BM8563_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
	tm->tm_year = bcd2bin(buf[BM8563_REG_YR]) + 100;
	/* detect the polarity heuristically. see note above. */
	bm8563->c_polarity = (buf[BM8563_REG_MO] & BM8563_MO_C) ?
		(tm->tm_year >= 100) : (tm->tm_year < 100);

	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
		"mday=%d, mon=%d, year=%d, wday=%d\n",
		__func__,
		tm->tm_sec, tm->tm_min, tm->tm_hour,
		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

	return 0;
}

static int bm8563_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct bm8563 *bm8563 = i2c_get_clientdata(client);
	unsigned char buf[9];

	dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
		"mday=%d, mon=%d, year=%d, wday=%d\n",
		__func__,
		tm->tm_sec, tm->tm_min, tm->tm_hour,
		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

	/* hours, minutes and seconds */
	buf[BM8563_REG_SC] = bin2bcd(tm->tm_sec);
	buf[BM8563_REG_MN] = bin2bcd(tm->tm_min);
	buf[BM8563_REG_HR] = bin2bcd(tm->tm_hour);

	buf[BM8563_REG_DM] = bin2bcd(tm->tm_mday);

	/* month, 1 - 12 */
	buf[BM8563_REG_MO] = bin2bcd(tm->tm_mon + 1);

	/* year and century */
	buf[BM8563_REG_YR] = bin2bcd(tm->tm_year - 100);
	if (bm8563->c_polarity ? (tm->tm_year >= 100) : (tm->tm_year < 100))
		buf[BM8563_REG_MO] |= BM8563_MO_C;

	buf[BM8563_REG_DW] = tm->tm_wday & 0x07;

	return bm8563_write_block_data(client, BM8563_REG_SC,
				9 - BM8563_REG_SC, buf + BM8563_REG_SC);
}

static int bm8563_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct i2c_client *client = to_i2c_client(dev);
	int ret;

	switch (cmd) {
	case RTC_VL_READ:
		ret = i2c_smbus_read_byte_data(client, BM8563_REG_SC);
		if (ret < 0)
			return ret;

		return put_user(ret & BM8563_SC_LV ? RTC_VL_DATA_INVALID : 0,
				(unsigned int __user *)arg);
	default:
		return -ENOIOCTLCMD;
	}
}

static int bm8563_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *tm)
{
	struct i2c_client *client = to_i2c_client(dev);
	unsigned char buf[4];
	int err;

	err = bm8563_read_block_data(client, BM8563_REG_AMN, 4, buf);
	if (err)
		return err;

	dev_dbg(&client->dev,
		"%s: raw data is min=%02x, hr=%02x, mday=%02x, wday=%02x\n",
		__func__, buf[0], buf[1], buf[2], buf[3]);

	tm->time.tm_sec = 0;
	tm->time.tm_min = bcd2bin(buf[0] & 0x7F);
	tm->time.tm_hour = bcd2bin(buf[1] & 0x3F);
	tm->time.tm_mday = bcd2bin(buf[2] & 0x3F);
	tm->time.tm_wday = bcd2bin(buf[3] & 0x7);

	err = bm8563_get_alarm_mode(client, &tm->enabled, &tm->pending);
	if (err < 0)
		return err;

	dev_dbg(&client->dev, "%s: tm is mins=%d, hours=%d, mday=%d, wday=%d,"
		" enabled=%d, pending=%d\n", __func__, tm->time.tm_min,
		tm->time.tm_hour, tm->time.tm_mday, tm->time.tm_wday,
		tm->enabled, tm->pending);

	return 0;
}

static int bm8563_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *tm)
{
	struct i2c_client *client = to_i2c_client(dev);
	unsigned char buf[4];
	int err;

	/* The alarm has no seconds, round up to nearest minute */
	if (tm->time.tm_sec) {
		time64_t alarm_time = rtc_tm_to_time64(&tm->time);

		alarm_time += 60 - tm->time.tm_sec;
		rtc_time64_to_tm(alarm_time, &tm->time);
	}

	dev_dbg(dev, "%s, min=%d hour=%d wday=%d mday=%d "
		"enabled=%d pending=%d\n", __func__,
		tm->time.tm_min, tm->time.tm_hour, tm->time.tm_wday,
		tm->time.tm_mday, tm->enabled, tm->pending);

	buf[0] = bin2bcd(tm->time.tm_min);
	buf[1] = bin2bcd(tm->time.tm_hour);
	buf[2] = bin2bcd(tm->time.tm_mday);
	buf[3] = tm->time.tm_wday & 0x07;

	err = bm8563_write_block_data(client, BM8563_REG_AMN, 4, buf);
	if (err)
		return err;

	return bm8563_set_alarm_mode(client, !!tm->enabled);
}

static int bm8563_irq_enable(struct device *dev, unsigned int enabled)
{
	dev_dbg(dev, "%s: en=%d\n", __func__, enabled);
	return bm8563_set_alarm_mode(to_i2c_client(dev), !!enabled);
}

#ifdef CONFIG_COMMON_CLK
/*
 * Handling of the clkout
 */

#define clkout_hw_to_bm8563(_hw) container_of(_hw, struct bm8563, clkout_hw)

static const int clkout_rates[] = {
	32768,
	1024,
	32,
	1,
};

static unsigned long bm8563_clkout_recalc_rate(struct clk_hw *hw,
						unsigned long parent_rate)
{
	struct bm8563 *bm8563 = clkout_hw_to_bm8563(hw);
	struct i2c_client *client = bm8563->client;
	unsigned char buf;
	int ret = bm8563_read_block_data(client, BM8563_REG_CLKO, 1, &buf);

	if (ret < 0)
		return 0;

	buf &= BM8563_REG_CLKO_F_MASK;
	return clkout_rates[buf];
}

static long bm8563_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
				      unsigned long *prate)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
		if (clkout_rates[i] <= rate)
			return clkout_rates[i];

	return 0;
}

static int bm8563_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long parent_rate)
{
	struct bm8563 *bm8563 = clkout_hw_to_bm8563(hw);
	struct i2c_client *client = bm8563->client;
	unsigned char buf;
	int ret = bm8563_read_block_data(client, BM8563_REG_CLKO, 1, &buf);
	int i;

	if (ret < 0)
		return ret;

	for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
		if (clkout_rates[i] == rate) {
			buf &= ~BM8563_REG_CLKO_F_MASK;
			buf |= i;
			ret = bm8563_write_block_data(client,
						       BM8563_REG_CLKO, 1,
						       &buf);
			return ret;
		}

	return -EINVAL;
}

static int bm8563_clkout_control(struct clk_hw *hw, bool enable)
{
	struct bm8563 *bm8563 = clkout_hw_to_bm8563(hw);
	struct i2c_client *client = bm8563->client;
	unsigned char buf;
	int ret = bm8563_read_block_data(client, BM8563_REG_CLKO, 1, &buf);

	if (ret < 0)
		return ret;

	if (enable)
		buf |= BM8563_REG_CLKO_FE;
	else
		buf &= ~BM8563_REG_CLKO_FE;

	ret = bm8563_write_block_data(client, BM8563_REG_CLKO, 1, &buf);
	return ret;
}

static int bm8563_clkout_prepare(struct clk_hw *hw)
{
	return bm8563_clkout_control(hw, 1);
}

static void bm8563_clkout_unprepare(struct clk_hw *hw)
{
	bm8563_clkout_control(hw, 0);
}

static int bm8563_clkout_is_prepared(struct clk_hw *hw)
{
	struct bm8563 *bm8563 = clkout_hw_to_bm8563(hw);
	struct i2c_client *client = bm8563->client;
	unsigned char buf;
	int ret = bm8563_read_block_data(client, BM8563_REG_CLKO, 1, &buf);

	if (ret < 0)
		return ret;

	return !!(buf & BM8563_REG_CLKO_FE);
}

static const struct clk_ops bm8563_clkout_ops = {
	.prepare = bm8563_clkout_prepare,
	.unprepare = bm8563_clkout_unprepare,
	.is_prepared = bm8563_clkout_is_prepared,
	.recalc_rate = bm8563_clkout_recalc_rate,
	.round_rate = bm8563_clkout_round_rate,
	.set_rate = bm8563_clkout_set_rate,
};

static struct clk *bm8563_clkout_register_clk(struct bm8563 *bm8563)
{
	struct i2c_client *client = bm8563->client;
	struct device_node *node = client->dev.of_node;
	struct clk *clk;
	struct clk_init_data init;
	int ret;
	unsigned char buf;

	/* disable the clkout output */
	buf = 0;
	ret = bm8563_write_block_data(client, BM8563_REG_CLKO, 1, &buf);
	if (ret < 0)
		return ERR_PTR(ret);

	init.name = "bm8563-clkout";
	init.ops = &bm8563_clkout_ops;
	init.flags = 0;
	init.parent_names = NULL;
	init.num_parents = 0;
	bm8563->clkout_hw.init = &init;

	/* optional override of the clockname */
	of_property_read_string(node, "clock-output-names", &init.name);

	/* register the clock */
	clk = devm_clk_register(&client->dev, &bm8563->clkout_hw);

	if (!IS_ERR(clk))
		of_clk_add_provider(node, of_clk_src_simple_get, clk);

	return clk;
}
#endif

static const struct rtc_class_ops bm8563_rtc_ops = {
	.ioctl		= bm8563_rtc_ioctl,
	.read_time	= bm8563_rtc_read_time,
	.set_time	= bm8563_rtc_set_time,
	.read_alarm	= bm8563_rtc_read_alarm,
	.set_alarm	= bm8563_rtc_set_alarm,
	.alarm_irq_enable = bm8563_irq_enable,
};

static int bm8563_probe(struct i2c_client *client,
				const struct i2c_device_id *id)
{
	struct bm8563 *bm8563;
	int err, value;
	unsigned char buf;
	unsigned int vdd_en_gpio;
	enum of_gpio_flags flags;

	vdd_en_gpio = of_get_named_gpio_flags(client->dev.of_node, "ingenic,vdd-en-gpio", 0, &flags);
	if(gpio_is_valid(vdd_en_gpio)) {
		if(devm_gpio_request(&client->dev, vdd_en_gpio, "rtc-vdd-en") < 0) {
			printk("Failed to request rtc-vdd-en-gpio pin!\n");
		}
		value = (flags & OF_GPIO_ACTIVE_LOW) ? 0 : 1;
		gpio_direction_output(vdd_en_gpio, value);
		printk("Set rtc enable gpio %u, value %d\n", vdd_en_gpio, value);
	} else {
		dev_warn(&client->dev, "invalid gpio rtc-vdd-en-gpio: %d\n", vdd_en_gpio);
	}

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
		return -ENODEV;

	bm8563 = devm_kzalloc(&client->dev, sizeof(struct bm8563),
				GFP_KERNEL);
	if (!bm8563)
		return -ENOMEM;

	i2c_set_clientdata(client, bm8563);
	bm8563->client = client;
	device_set_wakeup_capable(&client->dev, 1);

	/* Set timer to lowest frequency to save power (ref Haoyu datasheet) */
	buf = BM8563_TMRC_1_60;
	err = bm8563_write_block_data(client, BM8563_REG_TMRC, 1, &buf);
	if (err < 0) {
		dev_err(&client->dev, "%s: write error\n", __func__);
		return err;
	}

	/* Clear flags and disable interrupts */
	buf = 0;
	err = bm8563_write_block_data(client, BM8563_REG_ST2, 1, &buf);
	if (err < 0) {
		dev_err(&client->dev, "%s: write error\n", __func__);
		return err;
	}

	bm8563->rtc = devm_rtc_allocate_device(&client->dev);
	if (IS_ERR(bm8563->rtc))
		return PTR_ERR(bm8563->rtc);

	bm8563->rtc->ops = &bm8563_rtc_ops;
	/* the bm8563 alarm only supports a minute accuracy */
	bm8563->rtc->uie_unsupported = 1;
	bm8563->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
	bm8563->rtc->range_max = RTC_TIMESTAMP_END_2099;
	bm8563->rtc->set_start_time = true;

	if (client->irq > 0) {
		err = devm_request_threaded_irq(&client->dev, client->irq,
				NULL, bm8563_irq,
				IRQF_SHARED | IRQF_ONESHOT | IRQF_TRIGGER_LOW,
				bm8563_driver.driver.name, client);
		if (err) {
			dev_err(&client->dev, "unable to request IRQ %d\n",
								client->irq);
			return err;
		}
	}

	err = rtc_register_device(bm8563->rtc);
	if (err)
		return err;

#ifdef CONFIG_COMMON_CLK
	/* register clk in common clk framework */
	bm8563_clkout_register_clk(bm8563);
#endif

	return 0;
}

static const struct i2c_device_id bm8563_id[] = {
	{ "bm8563", 0 },
	{ }
};

static const struct of_device_id bm8563_of_match[] = {
	{ .compatible = "belling,bm8563" },
	{}
};

static struct i2c_driver bm8563_driver = {
	.driver		= {
		.name	= "rtc_bm8563",
		.of_match_table = of_match_ptr(bm8563_of_match),
	},
	.probe		= bm8563_probe,
	.id_table	= bm8563_id,
};

module_i2c_driver(bm8563_driver);

MODULE_AUTHOR("<xxl@163.com>");
MODULE_DESCRIPTION("belling BM8563 RTC8564 RTC driver");
MODULE_LICENSE("GPL");

make之后,生产了ko文件;

测试结果:

问题和解决:

 1.i2c和pcf8563的内核启动失败

根据问题,我在make menucofig上取消i2c的驱动

开启君正RTC的驱动

 然后将编译好的内核烧录进去,程序启动:

不再看到pcf8563的报错信息,但是我调用hwclock的指令时,会报错
can't open '/dev/misc/rtc': No such file or directory

这个表示--rtc驱动没有加载成功!

我去查了网上一下资料:
比如hwclock: can't open '/dev/misc/rtc': No such file or directory_读行四海_新浪博客

我确定,我已经加载了君正官方的RTC支持,并且启动的iic的配置; 

2.hwclock报错:

 做了横向对比,查出如下问题:设备树没有做对应的设置
加入代码:

rtc: rtc@0x10003000 {
        compatible = "ingenic,rtc";
        reg = <0x10003000 0x4c>;
        interrupt-parent = <&core_intc>;
        interrupts = <IRQ_RTC>;
        system-power-controller;
        power-on-press-ms = <1000>;
        status = "ok";
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/589729.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

wmware启动ubuntu18.04,提示虚拟机使用中

背景和原因 搭建虚拟机环境时&#xff0c;处理问题&#xff0c;忘记虚拟机关机&#xff0c;直接关机&#xff0c;导致虚拟机不能使用&#xff0c;提示使用中 解决 &#xff0c;在关掉虚拟机的情况下&#xff0c;删除虚拟机下的以下文件 总结 每次关电脑前记得先关掉虚拟机&…

【跟马少平老师学AI】-【神经网络是怎么实现的】(七-3)词向量应用举例

一句话归纳&#xff1a;用TextCNN实现文本情感分类。 1&#xff09;TextCNN&#xff1a; 文本的卷积核是一维的。 2&#xff09;文本卷积运算&#xff1a;

【目标检测】DEtection TRansformer (DETR)

一、前言 论文&#xff1a; End-to-End Object Detection with Transformers 作者&#xff1a; Facebook AI 代码&#xff1a; DEtection TRansformer (DETR) 特点&#xff1a; 无proposal&#xff08;R-CNN系列&#xff09;、无anchor&#xff08;YOLO系列&#xff09;、无NM…

淘宝新店铺一般多久开始有单

淘宝新店铺一般多久开始有单 淘宝推广可以使用3an推客。3an推客&#xff08;CPS模式&#xff09;给商家提供的营销工具&#xff0c;由商家自主设置佣金比例&#xff0c;激励推广者去帮助商家推广商品链接&#xff0c;按最终有效交易金额支付佣金&#xff0c;不成交不扣费。是商…

DRF版本组件源码分析

DRF版本组件源码分析 在restful规范中要去&#xff0c;后端的API中需要体现版本。 3.6.1 GET参数传递版本 from rest_framework.versioning import QueryParameterVersioning单视图应用 多视图应用 # settings.pyREST_FRAMEWORK {"VERSION_PARAM": "versi…

[C++][数据结构]二叉搜索树:介绍和实现

二叉搜索树 概念 二叉搜索树又称二叉排序树&#xff0c;它是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值若它的右子树不为空&#xff0c;则右子树上所有节点的值都大于根节点的值它的左右子树也…

【数据结构】这样学习串的朴素模式匹配算法,简直不要太容易……

串的朴素模式匹配算法 导读一、串的模式匹配1.1 模式匹配是什么&#xff1f;1.2 为什么要有模式匹配算法&#xff1f; 二、朴素模式匹配算法2.1 算法底层逻辑2.2 算法实现2.2.1 过程解析2.2.2 思路分析2.2.3 思路总结2.2.4 代码编写数据类型函数的三要素函数主体 2.2.5 代码测试…

ThreeJS:项目搭建

介绍如何基于Vite、Vue、React构建ThreeJS项目。 Vite项目 1. 初始化项目&#xff0c;命令&#xff1a;npm init vitelatest&#xff0c; 2. 安装依赖&#xff0c;命令&#xff1a;npm install&#xff0c; 3. 启动项目&#xff0c;命令&#xff1a;npm run dev。 4. 样式初始…

06 - metastore服务、hive服务启动脚本以及相关使用技巧

目录 1、metastore服务 1.1、metastore运行模式 1.2、metastore部署 1.3、测试 2、编写Hive服务启动脚本 3、Hive使用技巧 3.1、Hive常用交互命令 3.2、Hive参数配置方式 3.3、Hive常见属性配置 1、metastore服务 Hive的metastore服务的作用是为Hive CLI或者Hiveserv…

【面试经典 150 | Kadane】环形子数组的最大和

文章目录 写在前面Tag题目来源解题思路方法一&#xff1a;求最大非空子数组和最小子数组和 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主&#xff0c;并附带一些对于本题涉及…

【Java基础】Maven安装与配置

1. 前言 Maven是一个基于 Java 的项目管理工具&#xff0c;因此最基本的要求是在计算机上安装 JDK。 Maven 对系统要求如下表&#xff1a; 2. Java环境设置 在 Java 官方网站 下载并安装 JDK 7.0 及以上版本&#xff0c;如果您不了解 JDK 的安装和配置&#xff0c;请参考&…

数组删除元素

数组删除元素 1.利用新的数组 将原数组arr的元素&#xff0c;复制到新数组newArr中&#xff0c;复制过程中将要删除的元素&#xff0c;选择不复制 public class Test01{public static void main(String [] args){String [] arr {"zhangsan","lisi","…

计算机毕业设计hadoop+hive+hbase学情分析 在线教育大数据 课程推荐系统 机器学习 深度学习 人工智能 大数据毕业设计 知识图谱 大数据毕业设计

毕 业 设 计&#xff08;论 文&#xff09;开 题 报 告 1&#xff0e;结合毕业设计&#xff08;论文&#xff09;课题情况&#xff0c;根据所查阅的文献资料&#xff0c;每人撰写不少于1000字的文献综述&#xff1a; 一、研究背景和意义 “互联网”和大数据带来了网络教育的蓬…

计算机网络chapter2——应用层

文章目录 第2章 应用层章节引出—— 2.1应用层协议原理2.1.1 网络应用程序体系结构&#xff08;1&#xff09;客户-服务器体系结构&#xff08;2&#xff09;对等(P2P)体系结构2.1.2 进程通信1.客户和服务器进程2.进程与计算机网络之间的接口3. 进程寻址 2.1.3 可供应用程序使用…

dns服务器是什么,dns服务器工具如何选?

“http”“.com”这些我们都不陌生&#xff0c;这就是我们平时所输入的网址的前后缀&#xff0c;其实他们都是某台服务器的主机名依靠DNS服务器转化的。有时我们会遇到网络访问慢或者网址打不开的情况&#xff0c;一般都是网速问题。但如果只有你访问慢&#xff0c;而其他人正常…

图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割

图像处理1 灰度处理data库的使用for循环批处理图像对图像属性的查看图片类型图片尺寸图片宽度图像高度通道数总像素个数最大像素值最小像素值&#xff0c;像素平均值图像点像素值 for循环分别显示图像rgb通道椒盐噪声的生成中值滤波处理高斯模糊处理图像切割 灰度处理 from sk…

JavaScript百炼成仙自学笔记——2

一、循环遍历&#xff1a; 方式一 for(var i0;i<10;i){console.log(i); }方式二 var i 0; while(i < 100){console.log(i);i; }细看代码就是 先定义变量i&#xff0c;再执行{}中的代码&#xff0c;最后改循环变量的值 二、遍历 什么事遍历&#xff1f; 什么时候会用…

【系统架构师】-选择题(十)

1、某计算机系统页面大小为2K&#xff0c;进程P1的页面变换表如下图所示&#xff0c;若P1要访问数据的逻辑地址为十六进制1B1AH&#xff0c;那么该逻辑地址经过变换后&#xff0c;其对应的物理地址应为十六进制 &#xff08;231AH&#xff09; 。 四位换一位 逻辑地址1B1AH对应…

一文理解前端如何调用后端(java)方法

阅读完文章大约需要3~5分钟 文章目录 一、什么是后端方法路径&#xff1f;二、ajax、axios调用后端方法总结 一、什么是后端方法路径&#xff1f; 这里针对的是 java 后端项目中在 controller 文件夹中的类文件&#xff0c;这类文件的后缀一般都会带有 controller&#xff0c…

241 基于matlab的Dijkstra算法进行路径规划

基于matlab的Dijkstra算法进行路径规划。可根据实际情况输入障碍物和起止点坐标信息&#xff1b; 输出避碰最短路径&#xff1b; 能够利用切线图算法对障碍物区域进行环境建模&#xff0c;设置障碍物的位置和区域。利用Dijkstra算法进行路径规划。程序已调通&#xff0c;可直接…