笔记1--Llama 3 超级课堂 | Llama3概述与演进历程

1、Llama 3概述

https://github.com/SmartFlowAI/Llama3-Tutorial.git
【Llama 3 五一超级课堂 | Llama3概述与演进历程】
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、Llama 3 改进点

【最新【大模型微调】大模型llama3技术全面解析 大模型应用部署 据说llama3不满足scaling law?】 https://www.bilibili.com/video/BV1kM4m1f7iM/?share_source=copy_web&vd_source=dda2d2fa9c7a85f3fb74cf7ccca3de22

GQA
在这里插入图片描述

在这里插入图片描述

编码词表
在这里插入图片描述
数据合成
在这里插入图片描述
模型最优化
在这里插入图片描述
160B和15T
在这里插入图片描述

DPO

在这里插入图片描述
在这里插入图片描述
与 RLHF 首先训练奖励模型进行策略优化不同,DPO 直接将偏好信息添加到优化过程中,而无需训练奖励模型的中间步骤。

DPO 使用 LLM 作为奖励模型,并采用二元交叉熵目标来优化策略,利用人类偏好数据来识别哪些响应是首选的,哪些不是。该政策根据首选反应进行调整,以提高其绩效。

DPO 与 RLHF 相比具有以下诸多优点:

  • 简单且易于实施

    与RLHF 涉及收集详细反馈、优化复杂策略和奖励模型训练的多层过程不同,DPO 直接将人类偏好集成到训练循环中。这种方法不仅消除了与过程相关的复杂性,而且更好地与预训练和微调的标准系统保持一致。此外,DPO 不涉及构建和调整奖励函数的复杂性。

  • 无需奖励模型训练
    DPO 无需训练额外的奖励模型,从而节省了计算资源并消除了与奖励模型准确性和维护相关的挑战。开发一个有效的奖励模型,将人类反馈解释为人工智能可操作的信号是一项复杂的任务。它需要大量的努力并且需要定期更新才能准确地反映不断变化的人类偏好。 DPO 通过直接利用偏好数据来改进模型,从而完全绕过此步骤。

参考资料:

https://www.cnblogs.com/lemonzhang/p/17910358.html

总结
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/589471.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Deep learning Part Five RNN--24.4.29

接着上期,CBOW模型无法解决文章内容过长的单词预测的,那该如何解决呢? 除此之外,根据图中5-5的左图所示,在CBOW模型的中间层求单词向量的和,这时就会出现另一个问题的,那就是上下文的单词的顺序…

Redis Zset的底层原理

Redis Zset的底层原理 ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值: 可以根据score值排序后member必须唯一可以根据member查询分数 因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学…

ZooKeeper知识点总结及分布式锁实现

最初接触ZooKeeper是之前的一个公司的微服务项目中,涉及到Dubbo和ZooKeeper,ZooKeeper作为微服务的注册和配置中心。好了,开始介绍ZooKeeper了。 目录 1.ZooKeeper的基本概念 2.ZooKeeper的节点(ZNode) 3. ZooKeep…

【Java笔记】第5章:函数

前言1. 函数的理解2. 函数的基本使用3. 函数的参数4. 函数的返回值5. 函数的执行机制6. 函数的递归调用结语 ↓ 上期回顾: 【Java笔记】第4章:深入学习循环结构 个人主页:C_GUIQU 归属专栏:【Java学习】 ↑ 前言 各位小伙伴大家好&#xff…

[随记]Mac安装Docker及运行开源Penpot

下载Docker Desktop for Mac:https://www.docker.com/products/docker-desktop/ 安装Docker Desktop for Mac,安装完成后,启动Docker,然后在终端输入: docker version 在Mac电脑的Desktop,随便创建一个文…

【真实体验】使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试【YashanDB迁移体验官】

一、前言 说一下我和崖山数据库的结缘,大概在去年吧,因为我经常在墨天轮写文章,看到崖山数据库推出了一崖山体验官的活动,我就报名参加了。第一次体验了崖山数据库,也测试了我司数据库到崖山数据库的兼容性&#xff0…

钉钉手机端调试前端H5项目流程

此流程以Vue项目为例 一、操作步骤 在根目录下 vue.config.js 文件中将 devServer.host 设置为 0.0.0.0 // vue.config.js module.exports {devServer: {host: 0.0.0.0,...},...}本地启动项目,获取 Network App running at:- Local: http://localhost:8080/ -…

JAVA 学习·泛型(二)——通配泛型

有关泛型的基本概念&#xff0c;参见我的前一篇博客 JAVA 学习泛型&#xff08;一&#xff09;。 协变性 泛型不具备协变性 在介绍通配泛型之前&#xff0c;先来看一下下面的例子。我们定义了一个泛型栈&#xff1a; import java.util.ArrayList; class GenericStack<E>…

全新TOF感知RGBD相机 | 高帧率+AI,探索3D感知新境界

海康机器人在近期的机器视觉新品发布会上推出的全新TOF感知RGBD相机,无疑是对当前机器视觉技术的一次革新。这款相机不仅融合了高帧率、轻松集成、体积小巧以及供电稳定等诸多优点,更重要的是,它将AI与3D感知技术完美结合,通过高帧率+AI算法,实现了对不同场景的快速捕捉与…

Android Studio报错:Constant expression required

【出现的问题】&#xff1a; 使用JDK17以上版本&#xff0c;switch语句报错&#xff1a;Constant expression required 【解决方法】&#xff1a; 在gradle.properties配置文件下添加代码&#xff1a; android.nonFinalResIdsfalse 如图&#xff1a; 接着再点击右上角的Sync…

asyncionetworkxFuncAnimation学习--动态显示计算图的运行情况

asyncio&networkx&FuncAnimation学习--动态显示计算图的运行情况 一.效果二.代码 一.目的 1.动态显示计算图的运行状态(点或边是否已完成) 二.步骤: 1.定义计算图 2.asyncio 并行计算 3.networkx 显示计算图 4.FuncAnimation 动态更新 三.依赖: conda install pygraphv…

Linux shell编程学习笔记48:touch命令

0 前言 touch是csdn技能树Linux基础练习题中最常见的一条命令&#xff0c;这次我们就来研究它的功能和用法。 1. touch命令的功能、格式和选项说明 我们可以使用命令 touch --help 来查看touch命令的帮助信息。 purpleEndurer bash ~ $ touch --help Usage: touch [OPTION]…

pyqt 按钮常用格式Qss设置

pyqt 按钮常用格式Qss设置 QSS介绍按钮常用的QSS设置效果代码 QSS介绍 Qt Style Sheets (QSS) 是 Qt 框架中用于定制应用程序界面样式的一种语言。它类似于网页开发中的 CSS&#xff08;Cascading Style Sheets&#xff09;&#xff0c;但专门为 Qt 应用程序设计。使用 QSS&am…

数据分析--客户价值分析RFM(分箱法/标准化)

原数据 原数据如果有异常或者缺失等情况&#xff0c;要先对数据进行处理 &#xff0c;再进行下面的操作&#xff0c;要不然会影响结果的正确性 一、根据RFM计算客户价值并对客户进行细分 1. 数据预处理 1.1 创建视图存储 R、F、M的最大最小值 创建视图存储R 、F、M 的最大最小…

力扣练习题(2024/5/2)

1填充每个节点的下一个右侧节点指针 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树定义如下&#xff1a; struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针&#xff0c;让这个…

C#知识|Dictionary泛型集合的使用总结

哈喽,你好,我是雷工! 以下是C#Dictionary泛型集合的学习笔记。 01 Dictionary泛型集合 1.1、Dictionary<K,V>通常称为字典, 1.2、其中<K,V>是自定义的,用来约束集合中元素类型。 1.3、在编译时检查类型约束, 1.4、无需装箱拆箱操作, 1.5、操作与哈希表(Ha…

C++ string类

目录 0.前言 1.为什么学习string类 1.1 C语言字符串的局限性 1.2 C string类的优势 2.标准库中的string类 2.1 字符串作为字符序列的类 2.2 接口与标准容器类似 2.3 基于模板的设计 2.4 编码和字符处理 3.string类的常用接口说明 3.1构造函数 3.1.1默认构造函数 3…

前端Web开发基础知识

HTML定义 超文本标记语言&#xff08;英语&#xff1a;HyperText Markup Language&#xff0c;简称&#xff1a;HTML&#xff09;是一种用于创建网页的标准标记语言。 什么是 HTML? HTML 是用来描述网页的一种语言。 HTML 指的是超文本标记语言: HyperText Markup LanguageH…

ELK Stack 8 接入ElasticFlow

介绍 Netflow v5 / v9 / v10&#xff08;IPFIX&#xff09;&#xff0c;支持大部分网络厂商及VMware的分布式交换机。 NetFlow是一种数据交换方式。Netflow提供网络流量的会话级视图&#xff0c;记录下每个TCP/IP事务的信息。当汇集起来时&#xff0c;它更加易于管理和易读。…

EasyExcel 处理 Excel

序言 本文介绍在日常的开发中&#xff0c;如何使用 EasyExcel 高效处理 Excel。 一、EasyExcel 是什么 EasyExcel 是阿里巴巴开源的一个 Java Excel 操作类库&#xff0c;它基于 Apache POI 封装了简单易用的 API&#xff0c;使得我们能够方便地读取、写入 Excel 文件。Easy…