目录
力扣37. 解数独
解析代码
力扣37. 解数独
37. 解数独
难度 困难
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] 输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
class Solution {
public:
void solveSudoku(vector<vector<char>>& board) {
}
};
解析代码
为了存储每个位置的元素,我们需要定义⼀个⼆维数组。首先记录所有已知的数据,然后遍历所有需要处理的位置,并遍历数字 1~9。对于每个位置,检查该数字是否可以存放在该位置,同时检查行、列和九宫格是否唯一。
根据力扣36. 有效的数独的解法,可以使用一个二维数组来记录每个数字在每一行中是否出现,一个二维数组来记录每个数字在每一列中是否出现。对于九宫格,可以用行和列除以 3 得到的商作为九宫格的坐标,并使用一个三维数组来记录每个数字在每一个九宫格中是否出现。在检查是否存在冲突时,只需检查行、列和九宫格里对应的数字是否已被标记。如果数字至少有一个位置(行、列、九宫格)被标记,则存在冲突,因此不能在该位置放置当前数字。
特别地,在本题中,我们需要直接修改给出的数组,因此在找到一种可行的方法时,应该停止递归,以防止正确的方法被覆盖。
初始化定义:
- 定义行、列、九宫格标记数组以及找到可行方法的标记变量,将它们初始化为 false。
- 定义一个数组来存储每个需要处理的位置。
- 将题目给出的所有元素的行、列以及九宫格坐标标记为 true。
- 将所有需要处理的位置存入数组。
递归流程如下:
- 结束条件:已经处理完所有需要处理的元素。如果找到了可行的解决方案,则将标记变量更新为true 并返回。
- 获取当前需要处理的元素的行列值。
- 遍历数字 1~9。如果当前数字可以填入当前位置,并且标记变量未被赋值为 true,则将当前位置的行、列以及九宫格坐标标记为 true,将当前数字赋值给 board 数组中的相应位置元素,然后对下一个位置进⾏递归。
- 递归结束时,撤回标记。
class Solution {
bool row[9][10];
bool col[9][10];
bool grid[3][3][10];
public:
void solveSudoku(vector<vector<char>>& board) {
for(int i = 0; i < 9; ++i) // 初始化
{
for(int j = 0; j < 9; ++j)
{
if(board[i][j] != '.')
{
int n = board[i][j] - '0';
row[i][n] = col[j][n] = grid[i / 3][j / 3][n] = true;
}
}
}
dfs(board);
}
bool dfs(vector<vector<char>>& board)
{
for(int i = 0; i < 9; ++i)
{
for(int j = 0; j < 9; ++j)
{
if(board[i][j] == '.')
{
for(int n = 1; n <= 9; ++n)
{
if(!row[i][n] && !col[j][n] && !grid[i / 3][j / 3][n])
{
board[i][j] = n + '0'; // 填数
row[i][n] = col[j][n] = grid[i / 3][j / 3][n] = true;
if(dfs(board) == true) // 填对了,告诉上一层填对了
return true;
board[i][j] = '.'; // 回复现场
row[i][n] = col[j][n] = grid[i / 3][j / 3][n] = false;
}
}
return false; // 1到9都不行
}
}
}
return true; // 填完了
}
};