基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

       基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真。基于模糊PI控制算法的龙格-库塔(Runge-Kutta, RK)连续搅拌釜反应器(Continuous Stirred Tank Reactor, CSTR)模型控制系统,是将模糊控制理论与经典的数值积分方法相结合的一种先进控制策略。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

52

4.系统原理简介

       模糊控制是一种基于模糊集合理论和语言变量的控制方法,适用于非线性、时变系统的控制。模糊PI控制算法结合了比例(P)控制的快速响应特性和积分(I)控制的无静差特性,通过模糊逻辑系统实现对控制误差和误差变化率的处理。

模糊化

       首先,将控制误差e和误差变化率Δe(误差的微分)映射为语言变量,如“负大”、“负小”、“零”、“正小”、“正大”。模糊化过程涉及定义合适的隶属度函数,如三角形或高斯型函数。

规则库

建立模糊控制规则库,基于误差和误差变化率的组合来决定控制动作的大小。例如:

  • 如果误差是“负大”且误差变化率是“负大”,则控制输出“正大”;
  • 如果误差是“正小”且误差变化率是“零”,则控制输出“正小”。

推理与去模糊化

       应用模糊逻辑推理,将输入的模糊集通过规则库进行模糊推理,得到控制输出的模糊集。随后,通过去模糊化过程(如重心法)将其转化为具体的控制输出值u。

龙格-库塔方法

        龙格-库塔方法是一种常用的数值积分方法,用于求解常微分方程初值问题。在CSTR模型中,通常涉及反应物料的浓度、温度等随时间变化的动态方程。以四阶龙格-库塔为例,其公式为:

       在CSTR模型控制系统中,模糊PI控制器的输出u作为控制变量(如加热功率或原料流速)直接作用于系统,影响反应过程。通过实时监测反应器的关键参数(如温度、浓度),计算控制误差和误差变化率,然后应用模糊PI控制算法计算出适当的控制信号u。

       其中,C为反应物浓度,T为温度,F为流速,V为体积,Cin​为进料浓度,k为反应速率常数,n为反应级数,U为传热系数,A为换热面积,ρ为密度,Q为加热功率,α(T)为温度相关的反应热效应系数。

5.完整工程文件

v

V

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/586278.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言.自定义类型:结构体

自定义类型:结构体 1.结构体类型的声明1.1结构体回顾1.1.1结构体的声明1.1.2结构体变量的创建和初始化 1.2结构体的特殊声明1.3结构体的自引用 2.结构体内存对齐2.1对齐规则2.2为什么存在内存对齐2.3修改默认对齐数 3.结构体传参4.结构体实现位段4.1什么是位段4.2位…

[附源码]SpringBoot+Vue网盘项目_仿某度盘

视频演示 [附源码]SpringBootVue网盘项目_仿某度盘 功能介绍 支持秒传支持视频音频播放、拖拽进度条、倍速播放等支持图片预览,旋转,放大支持多人一起上传,共享上传进度(例如a上传苍老师学习资料到50%,突然b也上传苍老…

PHP源码_最新Ai对话系统网站源码 ChatGPT+搭建教程+前后端

基于ChatGPT开发的一个人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论…

【MySQL精炼宝库】深度解析索引 | 事务

目录 一、索引 1.1 索引(index)概念: 1.2 索引的作用: 1.3 索引的缺点: 1.4 索引的使用场景: 1.5 索引的使用: 1.6 面试题:索引底层的数据结构(核心内容): 1.7 索引列查询(主…

【opencv4.8.1 源码编译】windows10 OpenCV 4.8.1源码编译并实现 CUDA 12加速

Windows 下使用 CMake3.29.2 Visual Studio 2022 编译 OpenCV 4.8.1 及其扩展模块cuda12.0teslaT4显卡 记录自己在编译时踩过的坑,避免下次再犯或者给有需要的人。 在实际使用中,如果是对处理时间要求比较高的场景,使用OpenCV处理图片数据很…

Flask教程2:flask高级视图

文章目录 add_url_rule类视图的引入装饰器的自定义与使用蓝图的使用url_prefix设置蓝图前缀 add_url_rule 欲实现url与视图函数的绑定,除了使用路由装饰器app.route,我们还可以通过add_url_rule(rule,endpointNone,view_funcNone)方法,其中&…

Flutter笔记:Widgets Easier组件库(1)使用各式边框

Flutter笔记 Widgets Easier组件库(1):使用边框 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…

【stomp 实战】Spring websocket 用户订阅和会话的管理源码分析

通过Spring websocket 用户校验和业务会话绑定我们学会了如何将业务会话绑定到spring websocket会话上。通过这一节,我们来分析一下会话和订阅的实现 用户会话的数据结构 SessionInfo 用户会话 用户会话定义如下: private static final class Sessio…

利用Argo数据分别计算温度、盐度和温盐所造成的比容海平面变化

本文所用到的温盐数据集:IPRC(美国夏威夷大学国际太平洋研究中心) Argo data products | Argo (ucsd.edu)https://argo.ucsd.edu/data/argo-data-products/ 理论知识(相关计算公式): 代码和工具包准备&…

python 中的数据结构

python 中的数据结构 1.1 序列 序列时有索引的数组 举例实现: a["北京","上海","广州","深圳","重庆","成都"] print(a[2]) print(a[-1] " " a[-2]) print(a[1:3]) # 运行结果 "&…

Vulnhub-DIGITALWORLD.LOCAL: VENGEANCE渗透

文章目录 前言1、靶机ip配置2、渗透目标3、渗透概括 开始实战一、信息获取二、smb下载线索三、制作字典四、爆破压缩包密码五、线索分析六、提权!!! Vulnhub靶机:DIGITALWORLD.LOCAL: VENGEANCE ( digitalworld.local: VENGEANCE …

chrome和drive安装包路径

Chrome for Testing availability (googlechromelabs.github.io) 下载Stable下面的包哈

【Leetcode每日一题】 分治 - 排序数组(难度⭐⭐)(69)

1. 题目解析 题目链接:912. 排序数组 这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。 2.算法原理 归并排序(Merge Sort)是一种采用“分而治之”(Divide and Conquer)策略…

LLM之RAG实战(三十八)| RAG分块策略之语义分块

在RAG应用中,分块是非常重要的一个环节,常见的分块方法有如下几种: Fixed size chunkingRecursive ChunkingDocument Specific ChunkingSemantic Chunking a)Fixed size chunking:这是最常见、最直接的分块方法。我们…

C/C++基础语法练习 - 计算阶乘(新手推荐阅读✨)

题目链接:https://www.starrycoding.com/problem/160 题目描述 给定一个整数 n n n,输出阶乘 n ! n! n!。 输入格式 一个整数 n ( 1 ≤ n ≤ 20 ) n(1 \le n \le 20) n(1≤n≤20)。 输出格式 一个整数 n ! n! n!。 输入样例1 16输出样例1 20922…

树的中心 树形dp

#include<bits/stdc.h> using namespace std; int n; const int N 100005; // 无向边 int ne[N * 2], e[N * 2], idx; int h[N]; int vis[N];int ans 0x7fffffff;void add(int a, int b) {e[idx] b, ne[idx] h[a], h[a] idx; }int dfs(int u) { // 作为根节点vis[u]…

机器学习:基于Sklearn,使用随机森林分类器RandomForestClassifier检测信用卡欺诈

前言 系列专栏&#xff1a;机器学习&#xff1a;高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目&#xff0c;每个项目都处理一组不同的问题&#xff0c;包括监督和无监督学习、分类、回归和聚类&#xff0c;而且涉及创建深度学…

分享一份物联网 SAAS 平台架构设计

一、架构图**** 二、Nginx**** 用于做服务的反向代理。 三、网关**** PaaS平台所有服务统一入口&#xff0c;包含token鉴权功能。 四、开放平台**** 对第三方平台开放的服务入口。 五、MQTT**** MQTT用于设备消息通信、内部服务消息通信。 六、Netty**** Socket通信设…

IoTDB 入门教程①——时序数据库为什么选IoTDB ?

文章目录 一、前文二、性能排行第一三、完全开源四、数据文件TsFile五、乱序数据高写入六、其他七、参考 一、前文 IoTDB入门教程——导读 关注博主的同学都知道&#xff0c;博主在物联网领域深耕多年。 时序数据库&#xff0c;博主已经用过很多&#xff0c;从最早的InfluxDB&a…

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-9.1-LED灯(模仿STM32驱动开发实验)

前言&#xff1a; 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM&#xff08;MX6U&#xff09;裸机篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…