JAVA面试专题-Redis

你在最近的项目中哪些场景使用了Redis

缓存

缓存穿透

缓存穿透:查询一个不存在的数据,mysql查询不到数据也不好直接写入缓存,导致每次请求都查数据库。
解决方案一:缓存空数据,即使查询返回的数据为空,也把这个空结果进行缓存(如key:1,value:null)。
优点:简单
缺点:消耗内存(总有空数据),不一致问题(来真的数据了)

解决方案二:布隆过滤器(可以使用redisson实现):查询之前先访问布隆过滤器,如果不存在就直接返回

优点:内存占用少,没有多余key
缺点:实现复杂,存在误判(bitmap位图越小误判越大,数组越大误判越小,但有内存消耗,一半百分之五以内的误判都可以接收)

布隆过滤器作用:可以用于检索一个元素是否在一个集合中(bitmap位图,数组每个单元只能存储0/1)。

 缓存击穿

缓存击穿:给某一个key设置了过期时间,当key过期的时候,恰好这个时间点对这个key有大量的并发请求,只能访问数据库,会把db压垮。

解决方案一:互斥锁
未命中后获取互斥锁(如setnx),处理完后释放锁,其他线程拿到锁才能运行

解决方案二:逻辑过期
在设置key时设置过期时间字段存入缓存,查询时如果过期,获取互斥锁后直接返回过期数据,同时开启新线程进行缓存重建释放锁,其他线程如果获取互斥锁失败后,仍然返回过期数据。

 缓存雪崩

缓存雪崩:同一时间大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库

 解决方案:
1. 给不同的Key的TTL添加随机值,避免同时过期
2. 利用Redis集群提高服务的可用性(哨兵模式,集群模式)
3. 给缓存业务添加降级限流策略(nginx或Spring cloud gateway)
4. 给业务添加多级缓存

《缓存三兄弟》

穿透无中生有key,布隆过滤null隔离。
缓存击穿过期key,锁与非期解难题。
雪崩大量过期key,过期时间要随机。
面试必考三兄弟,可用限流来保底。

先删除缓存还是先修改数据库-双写一致性

读操作:缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间

写操作:延迟双删:先删除缓存,修改数据库,延时一段时间再删除缓存

分布式锁(强一致性,性能低)

共享锁:读锁readLock,加锁之后,其他线程可以共享读操作
排他锁:独占锁write,加锁之后,阻塞其他线程读写操作

 异步通知(允许延时一致的业务):

修改数据后写入数据库同时发送消息到MQ,受到MQ消息后更新缓存,主要依赖于MQ的可靠性。

阿里的组件canal组件也可以实现数据同步,不需要更改业务代码,部署服务后,它会把自己伪装成mysql的一个从节点,mysql数据更新后,canal会读取binlog数据,然后通过canal客户端获取到数据,更新缓存即可。

Redis持久化

RDB

RDB(Redis Database Backup file)Redis数据备份文件,也叫Redis数据快照,可以把内存中的所有数据记录到磁盘中,当Redis故障时,从磁盘读取快照文件,恢复数据。

主动备份:save bgsave(不影响主进程,一般用这个)
被动备份:redis.conf修改文件

RDB执行原理:物理内存通过进程中的页表交换数据,bgsave开始时会fork主进程得到子进程(复制页表),子进程完成fork后读取内存数据并写入RDB文件,fork采用copy-on-write技术(主进程读取内存时,访问共享内存;主进程执行写操作时,从内存中拷贝一份数据副本执行写操作,以后主进程读也从副本读)

AOF

AOF(Append Only File)追加文件,redis处理的每一个写命令都会记录在AOF文件中,可以看做是命令日志文件。

因为是记录命令,所以AOF文件会很大,通过bgrewriteaof命令,让AOF执行重写功能,只有最后一次有意义。也可以在配置文件里设置触发阈值自动重写。

Redis过期策略

惰性删除

设置key过期时间后,不去管它,下次使用该key时,检查是否过期,过期删除。
优点:CPU友好,不用浪费时间检查
缺点:内存不友好,不用就永远不会释放

定期删除

每隔一段时间对key检查,从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key。氛围SLOW(执行频率10hz,每次不超过25ms)和FAST(每次时间循环尝试执行,间隔不低于2ms,耗时不超过1ms)两种模式。
优点:可以通过限制删除操作执行的时长和频率来减少删除操作对cpu的影响,也能释放过期key占用的内存
缺点:难以确定删除操作的时长和频率

所以:Redis的过期删除策略为:惰性删除+定期删除配合使用

数据淘汰策略

使用建议:
1. 优先使用allkeys-lru策略,把最近最常访问的数据留在缓存中,如果业务有明显的冷热数据区分建议使用。
2. 访问数据频率差别不大,没有明显冷热区分,建议使用allkeys-random随机淘汰
3. 如果有置顶要求,使用volatile-lru策略,同时置顶数据不设置过期时间
4. 如果业务有短时高频访问的数据,建议使用lfu策略

分布式锁

可以使用setnx命令,或者直接用redisson(底层是setnx和lua脚本)

看门狗机制

每隔一段时间自动做一次续期(默认每隔十秒续期一次)

 可重入性

 基于redssion实现的分布式锁可重入,利用hash结构记录线程id和重入次数

主从一致性

RedLock(红锁):布置在一个redis实例上创建锁,应该实在多个redis实例上创建锁(n/2+1)。
但是红锁这个思想,实现复杂,性能差,运维繁琐,因为redis是基于AP思想啊(可用性),如果要实现主从一致,可以利用CP思想(一致性)的zookeeper来实现。

Redis集群方案

主从复制

单节点redis的并发能力是有上限的,要提高并发能力就要搭建主从集群,实现读写分离,往主节点里写,从节点里读。

 主从全量同步

slave节点执行replicaof命令建议连接,请求master数据同步(发送replid和offset),master判断是否是第一次同步(replid是否一致),如果是第一次,就向slave返回master的数据版本信息(replid,offset),slave保存版本信息,master执行bgsave生成RDB文件并向slave发送,slave清空本地数据,加载RDB文件。在这个发送期间,主节点记录RDB期间的所有命令存入到repl_baklog中发送到slave,slave执行接收到的命令。

 主从增量同步

适用于slave重启或后期数据变化,从节点发送replid和offset,主节点判断是否一致,如果不是第一次,就回复continue,之后去repl_back中获取offset后的数据,发送命令。

哨兵机制

Sentinel哨兵机制实现主从集群的自动故障恢复。

 服务状态监控

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令
主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
客观下线:如果超过sentinel数量一半的哨兵都认为该实例主观下线,该实例客观下线。

哨兵选主规则

判断主与从断开时间长短,超过指定值就排该从节点
然后判断从节点的slave-priority值,越小优先级越高
如果优先级一样,判断offset值,越大优先级越高
判断slave节点的运行id大小,越小优先级越高

集群脑裂

主节点和从节点和哨兵处于不同网络分区,使得哨兵灭有能够心跳感应到主节点,所以选举出了一个新的主节点,这样就存在了两个master,像大脑分裂一样,导致客户端孩子啊老主节点写入数据,新节点无法同步数据,网络恢复后,哨兵会将老的主节点降为从节点,再从新master中同步数据,导致数据丢失。
解决:修改redis配置,设置最小的从节点数量以及缩短主从数据同步的延迟时间。

 分片集群结构

主从和哨兵可以解决高可用,高并发读的问题,但是没有解决海量数据存储和高并发写问题,这时可以使用分片集群。
分片集群特征:
集群中有多个master,每个master保存不同数据
每个master有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会转发到正确节点

分片集群结构:数据读写

引入哈希槽概念,Redis集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。

 Redis是单线程的为什么速度这么快?

Redis是存内存操作,执行速度非常快
采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题
使用I/O多路复用模型,非阻塞IO

I/O多路复用模型

redis是纯内存操作,执行速度非常快,性能瓶颈是网络延迟而不是执行速度,I/O多路复用模型实现了高效的网络请求

常见的IO模型

阻塞IO:等待数据和从内核拷贝数据到用户空间都需要阻塞等待
非阻塞IO:recvform阶段立即返回结果而不阻塞第二阶段依旧阻塞
IO多路复用:利用单个线程来同时监听多个Socket,并在某个Socket可读,可写时得到通知,避免无效等待,充分利用cpu资源。

Redis网络模型

 提供了连接应答处理器,命令回复处理器(多线程回复事件),命令请求处理器(命令转换使用多线程,增加速度,命令执行依旧是单线程)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/586150.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#应用程序实现多屏显示

前言 随着业务发展,应用程序在一些特定场景下,只在一个显示器上展示信息已经不能满足用户需求。我们如何把主屏运行程序中多个窗体移动到各个扩展屏幕位置显示呢?C# 是通过什么方式来实现的,下面介绍 C# 使用 Screen 类的方式来实…

vue+elementUI实现点击左右箭头切换按钮功能

原本是可以用el-tabs做的,就像下面的样式,但是领导说不行 最后用button和element里面的el-carousel(走马灯)结合了一下 长这样 感觉还不错 可以自己改样式 代码如下: <div class"drawer-carousel"><el-carousel arrow"always" :loop"false…

Linux基础part-5

1、Linux用户与用户组管理 1、用户是什么&#xff1f; 实现资源分派&#xff08;区分和管理系统资源的访问权限&#xff0c;将不同的资源分配给不同的用户&#xff09;实现认证pam和授权&#xff08;用户身份通常通过用户名和密码进行认证&#xff0c;认证成功后系统将授予用…

开源、轻量、易用的服务器实时监控工具:哪吒探针

本文首发于只抄博客&#xff0c;欢迎点击原文链接了解更多内容。 前言 哪吒探针是一个开源、轻量、易用的服务器监控、运维工具&#xff0c;它有以下几个特点&#xff1a; 一键安装&#xff1a;可以一键安装面板与 Agent&#xff0c;并且支持 Linux、Windows、MacOS、OpenWRT…

scikit-learn:Python中的机器学习-1

简介&#xff1a;问题设置 什么是机器学习&#xff1f; 机器学习是关于构建具有可调参数的程序&#xff0c;这些参数可以自动调整&#xff0c;以便通过适应先前看到的数据来改善其行为。机器学习可以被认为是人工智能的一个子领域&#xff0c;因为这些算法可以被视为构建模块…

气象数据nc数据矢量化处理解析及可视化

气象数据可视化是将气象学领域中复杂的数据集转化为图形或图像的过程&#xff0c;以直观展示天气现象、气候模式、趋势和预报结果。气象数据的可视化技术广泛应用于科学研究、气象预报、航空、航海、农业生产、灾害预警系统、城市规划、公众服务等领域。以下是一些关键的气象数…

CSAPP | Bits, Bytes, and Integers

Great Reality Ints are not Integers, Floats are not Reals 对于 (x y) z x (y z)&#xff0c;无符号整形和有符号整形是成立的。 但是对于浮点数, (1e20 -1e20) 3.14 -> 3.14&#xff0c;而 1.e20 (-1e20 3.14) 0 typedef struct {int a[2];double d; }stru…

【LeetCode】拓扑排序——课程表 I II

拓扑排序&#xff1a; AOV网&#xff1a;若用DAG图&#xff08;有向无环图&#xff09;表示一个工程&#xff0c;其顶点表示活动&#xff0c;用有向边<Vi, Vj>表示活动Vi必须先于活动Vj进行的这样一种关系&#xff0c;则将这种有向图称为顶点表示活动的网络&#xff0c;…

JSP:操作指令

目录 目录 一、jsp:useBean操作 语法格式&#xff1a; 属性说明&#xff1a; scope作用域&#xff1a; 1.page&#xff1a; 2.request&#xff1a; 3.session&#xff1a; 4.application 案例&#xff1a;JavaBean的简单使用 二、jsp:setProperty操作 语法格式&a…

【记录】Python3| 将 PDF 转换成 HTML/XML(✅⭐⭐⭐⭐pdf2htmlEX)

本文将会被汇总至 【记录】Python3&#xff5c;2024年 PDF 转 XML 或 HTML 的第三方库的使用方式、测评过程以及对比结果&#xff08;汇总&#xff09;&#xff0c;更多其他工具请访问该文章查看。 文章目录 pdf2htmlEX 使用体验与评估1 安装指南2 测试代码3 测试结果3.1 转 HT…

jenkins转载文本

基于Docker容器DevOps应用方案 企业业务代码发布系统 一、企业业务代码发布方式 1.1 传统方式 以物理机或虚拟机为颗粒度部署部署环境比较复杂&#xff0c;需要有先进的自动化运维手段出现问题后重新部署成本大&#xff0c;一般采用集群方式部署部署后以静态方式展现 1.2 容…

ubuntu部署sonar与windows下使用sonar-scanner

ubuntu部署sonar与windows下使用sonar-scanner sonar部署java安装mysql安装配置sonarqube 插件安装sonar-scanner使用简单使用 sonar部署 使用的是sonarqube-7.5&#xff0c;支持的java环境是jdk8&#xff0c;且MySQL版本 >5.6 && <8.0 java安装 打开终端&…

为什么3D模型材质是透明的?---模大狮模型网

在进行3D建模和渲染过程中&#xff0c;正确的材质设置是保证模型外观逼真和渲染效果良好的关键之一。然而&#xff0c;有时您可能会遇到3D模型材质变成透明的情况&#xff0c;这可能会导致意想不到的效果和渲染结果。本文将探讨一些可能导致3D模型材质变成透明的原因&#xff0…

Go中为什么不建议用锁?

Go语言中是不建议用锁&#xff0c;而是用通道Channel来代替(不要通过共享内存来通信&#xff0c;而通过通信来共享内存)&#xff0c;当然锁也是可以用&#xff0c;锁是防止同一时刻多个goroutine操作同一个资源&#xff1b; GO语言中&#xff0c;要传递某个数据给另一个gorout…

亚马逊关键字搜索商品列表API接口:探索海量商品的利器

亚马逊关键字搜索商品列表API接口允许开发者通过输入关键字或特定参数&#xff0c;在亚马逊平台上进行商品搜索&#xff0c;并返回符合搜索条件的商品列表信息。这些信息包括商品的标题、图片、价格、评价等&#xff0c;为商家、开发者以及市场分析师提供了丰富的商品数据支持。…

Aker(安碁科技)晶振产品应用和选型

一、石英晶体振荡器简介 在电子电路系统中&#xff0c;特定的动作需要严格按照一定的顺序进行&#xff0c;以确保数据被正确处理和操作&#xff0c;时钟信号就成了系统工作的重要引导者。而且在多模块复杂电路系统中&#xff0c;为了确保不同功能模块能协调一致地工作&#xf…

C#调用skiasharp操作并绘制图片

之前学习ViewFaceCore时采用Panel控件和GDI将图片及识别出的人脸方框和关键点绘制出来&#xff0c;本文将其修改为基于SKControl和SKCanvas实现相同的显示效果并支持保存为本地图片。   新建Winform项目&#xff0c;在Nuget包管理器中搜索并安装一下SkiaSharp和ViewFaceCore…

三维SDMTSP:GWO灰狼优化算法求解三维单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

一、单仓库多旅行商问题 多旅行商问题&#xff08;Multiple Traveling Salesman Problem, MTSP&#xff09;是著名的旅行商问题&#xff08;Traveling Salesman Problem, TSP&#xff09;的延伸&#xff0c;多旅行商问题定义为&#xff1a;给定一个&#x1d45b;座城市的城市集…

springboot 集成 flowable

随着企业对于业务流程管理需求的增加&#xff0c;流程引擎在企业信息化建设中的作用越来越重要。Flowable是一个开源的轻量级业务流程管理&#xff08;BPM&#xff09;和工作流引擎&#xff0c;它支持BPMN 2.0标准。 Flowable的一些特点&#xff1a; 安装集成&#xff1a;Flow…

hdfs安全模式

hdfs安全模式 1.安全模式 查看hdfs是否在安全模式&#xff1a;不能上传数据 删除 修改 但是能查看 ------------------------ $>hdfs dfsadmin -safemode enter //进入 $>hdfs dfsadmin -safemode get //查看 $>hdfs dfsadmin -saf…