【深度学习基础(1)】什么是深度学习,深度学习与机器学习的区别、深度学习基本原理,深度学习的进展和未来

文章目录

    • 一. 深度学习概念
    • 二. 深度学习与机器学习的区别
    • 三. 理解深度学习的工作原理
      • 1. 每层的转换进行权重参数化
      • 2. 怎么衡量神经网络的质量
      • 3. 怎么减小损失值
    • 四. 深度学习已取得的进展
    • 五. 人工智能的未来 - 不要太过焦虑跟不上

一. 深度学习概念

先放一张图来理解下人工智能、机器学习、神经网络和深度学习之间的关系。

在这里插入图片描述

 

深度学习是机器学习的一个分支领域:它从数据中学习表示,强调从连续的层中学习,这些层对应于越来越有意义的表示。

 

1.深度的概念

  • 深度学习之“深度”并不是说这种方法能够获取更深层次的理解,而是指一系列连续的表示层。数据模型所包含的层数被称为该模型的深度(depth)。
  • 现代深度学习模型通常包含数十个甚至上百个连续的表示层,它们都是从训练数据中自动学习(how)而来的。

 

2.分层表示是通过什么模型学习得到的

在深度学习中,这些分层表示是通过叫作神经网络(neural network)的模型学习得到的。神经网络的结构是逐层堆叠。

浅层学习
与之相对,其他机器学习方法的重点通常是仅学习一两层的数据表示(例如获取像素直方图,然后应用分类规则),因此有时也被称为浅层学习(shallow learning)。

 

3.深度学习网络和大脑模型有关吗?

“神经网络”这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑(特别是视觉皮层)的理解中汲取部分灵感而形成的,但深度学习模型并不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型的学习机制相同。你最好也忘掉读过的深度学习与生物学之间的假想联系。就我们的目的而言,深度学习是从数据中学习表示的一种数学框架。

 

4.深度学习算法学到的数据表示是什么样的?

我们来看一个深度神经网络如何对数字图像进行变换,以便识别图像中的数字,如图所示。
![[Pasted image 20240430205224.png]]

信息穿过过滤器不断提纯数据

这个神经网络将数字图像变换为与原始图像差别越来越大的表示,而其中关于最终结果的信息越来越丰富。你可以将深度神经网络看作多级信息蒸馏(information distillation)过程:信息穿过连续的过滤器,其纯度越来越高(对任务的帮助越来越大)。

![[Pasted image 20240430210018.png]]
 

5.这就是深度学习的技术定义:一种多层的学习数据表示的方法。

这个想法很简单,但事实证明,如果具有足够大的规模,那么非常简单的机制将产生魔法般的效果。

 

二. 深度学习与机器学习的区别

深度学习是机器学习的一种特殊形式,两者的区别在于其所处理的数据类型和学习方法。

经典的机器学习算法需要人工干预,先对数据集进行预处理,然后再将其导入模型。这意味着人要在模型的输入数据中定义和标记特定特征,并组织到表格中,然后再将其导入机器学习模型。相反,深度学习算法不需要这种级别的预处理,并且能够理解非结构化数据,例如文本文档、像素数据图像或音频数据文件
在这里插入图片描述

在有大量数据,却缺乏相关主题的背景知识或手头有复杂耗时的任务的情况下,深度学习可能优于经典机器学习。

 

三. 理解深度学习的工作原理

1. 每层的转换进行权重参数化

在神经网络中,每层对输入数据所做的具体操作保存在该层的权重(weight)中,权重实质上就是一串数字。用术语来讲,每层实现的变换由其权重来参数化(parameterize),如图。权重有时也被称为该层的参数(parameter)。在这种语境下,学习的意思就是为神经网络的所有层找到一组权重值,使得该神经网络能够将每个示例的输入与其目标正确地一一对应。

在这里插入图片描述

但问题来了:一个深度神经网络可能包含上千万个参数,找到所有参数的正确取值似乎是一项非常艰巨的任务,特别是考虑到修改一个参数值将影响其他所有参数的行为。

 

2. 怎么衡量神经网络的质量

  • 若要控制某个事物,首先需要能够观察它。若要控制神经网络的输出,需要能够衡量该输出与预期结果之间的距离。这是神经网络损失函数(lossfunction)的任务,该函数有时也被称为目标函数(objective function)或代价函数(cost function)。
  • 损失函数的输入是神经网络的预测值与真实目标值(你希望神经网络输出的结果),它的输出是一个距离值,反映该神经 网络在这个示例上的效果好坏,如图。

![[Pasted image 20240430211717.png]]

 

3. 怎么减小损失值

深度学习的基本技巧是将损失值作为反馈信号,来对权重值进行微调,以降低当前示例对应的损失值,如图。这种调节是优化器(optimizer)的任务,它实现了所谓的反向传播(backpropagation)算法,这是深度学习的核心算法。

![[Pasted image 20240430212311.png]]

训练循环:使损失函数最小化

由于一开始对神经网络的权重进行随机赋值,因此神经网络仅实现了一系列随机变换,其输出值自然与理想结果相去甚远,相应地,损失值也很大。但是,神经网络每处理一个示例,权重值都会向着正确的方向微调,损失值也相应减小。这就是训练循环(training loop),将这种循环重复足够多的次数(通常是对数千个示例进行数十次迭代),得到的权重值可以使损失函数最小化。具有最小损失值的神经网络,其输出值与目标值尽可能地接近,这就是一个训练好的神经网络。

再次强调,一旦具有足够大的规模,这个简单的机制将产生魔法般的效果。

 

四. 深度学习已取得的进展

深度学习已经实现了以下突破,它们都是机器学习历史上非常困难的领域:

  • 接近人类水平的图像分类
  • 接近人类水平的语音识别
  • 接近人类水平的手写文字识别
  • 大幅改进的机器翻译
  • 大幅改进的文本到语音转换数字助理,比如谷歌助理(Google Assistant)和亚马逊Alexa
  • 接近人类水平的自动驾驶
  • 更好的广告定向投放,谷歌、百度、必应都在使用
  • 更好的互联网搜索结果
  • 能够回答用自然语言提出的问题
  • 在下围棋时战胜人类

我们已成功将深度学习应用于许多问题,而这些问题在几年前还被认为是无法解决的。这些问题包括自动识别档案馆保存的上万份古代手稿,使用简单的智能手机在田间检测植物病害并对其进行分类,协助肿瘤医师或放射科医生解读医学影像数据,预测洪水、飓风甚至地震等自然灾害,等等。
 

all in 深度学习

随着每一个里程碑的出现,我们越来越接近这样一个时代:深度学习在人类从事的每一项活动和每一个领域中都能为我们提供帮助,包括科学、医学、制造业、能源、交通、软件开发、农业,甚至是艺术创作。

 

五. 人工智能的未来 - 不要太过焦虑跟不上

虽然我们对人工智能的短期期望可能不切实际,但长期来看,前景是光明的。我们才刚刚开始将深度学习应用于许多重要的问题,从医疗诊断到数字助理。在这些问题上,深度学习都具有变革性的意义。

 

在过去十年里,人工智能研究一直在以惊人的速度向前发展,这在很大程度上是由于人工智能短暂历史中前所未见的资金投入,但到目前为止,这些进展很少能够转化为改变世界的产品和流程
 

深度学习的大多数研究成果尚未得到应用,至少尚未应用到它在各行各业中能够解决的所有问题上。医生和会计师都还没有使用人工智能,你在日常生活中可能也并不经常使用人工智能技术。

当然,你可以向智能手机提出一些简单的问题并得到合理的回答,也可以在亚马逊网站上得到相当有用的产品推荐,还可以在谷歌相册中搜索“生日”并立刻找到你女儿上个月生日聚会的照片。这些技术已经比过去进步很多了,但类似的工具仍然只是日常生活的陪衬。人工智能尚未转变为我们工作、思考和生活的核心。

 

参考:
《Python深度学习(第二版)》–弗朗索瓦·肖莱
https://www.redhat.com/zh/topics/digital-transformation/what-is-deep-learning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/585426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

powershell 注册全局热键——提升效率小工具

powershell 注册全局热键 01 前言 在处理一些重复工作问题的时候,想搞一个小工具,配合全局快捷键来提高效率。因为是Windows系统,想到C#,但是又不想用VS开发,因为那样不够灵活,没办法随时修改随时用&…

Spring ai 快速入门及使用,构建你自己的ai

第一步:创建springboot项目 jdk必须是17及以上 1.8用不了 第二步 选择web和ai的依赖 选择openai 第三步 需要配置openai key 配置 分享个免费或的apikey的地方New API 会免费赠送1刀的token spring.application.namespringAI spring.ai.openai.base-urlhttps://ap…

推荐一个好用的命令行工具ShellGPT

ShellGPT 配置安装常用功能聊天写命令并执行 高级功能函数调用角色管理 总结 这两天突然想到,现有的很多工具都在被大模型重构,比如诞生了像perplexity.ai 这种新交互形式的搜索引擎,就连wps也推出了AI服务,甚至都可以直接生成ppt…

JavaScript转换和校验数字

本节我们使用的案例还是继续之前的银行家应用程序,只不过我们呢增加了两个账号,代码如下: const account1 {owner: Jonas Schmedtmann,movements: [200, 455.23, -306.5, 25000, -642.21, -133.9, 79.97, 1300],interestRate: 1.2, // %pin…

Leetcode 145:二叉树的后序遍历(迭代法)

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。 思路: 迭代法的思路是,使用栈,一层一层的将树节点遍历入栈。 比如下面这个树,使用迭代法,1)第一层,让根节点入栈。2&a…

20240428如何利用IDM下载磁链视频

缘起: https://weibo.com/tv/show/1034:4864336909500449 中国获奖独立纪录片《阿辉》揭秘红灯区“教父”的生存法则 5,751次观看 1年前 发布于 陕西 身为里中横 67.7万粉丝 互联网科技博主 微博原创视频博主 头条文章作者 https://weibo.com/tv/show/1034:4864…

树莓派驱动开发----spi flash设备w25q64开发

这期使用的是spi驱动开发框架&#xff0c;其实spi和iic合起来有一个 Regmap 子系统&#xff0c;下回讲这个&#xff01;&#xff01; 使用方法 &#xff1a;./w25q64App /dev/w25q64-device <cmd> <address> <cnt> <data> ... 可读写擦&#xff0…

代码审计之SAST自动化

前言: 很久没写文章了&#xff0c;有点忙&#xff0c;落个笔&#xff0c;分享一些捣鼓或说适配好的一些好玩的东西。 脚本工具不开源&#xff0c;给一些思路&#xff0c;希望能给大家带来一些收获。 笔者能力有限&#xff0c;如有错误&#xff0c;欢迎斧正。 正文&#xff1a…

文件分块+断点续传 实现大文件上传全栈解决方案(前端+nodejs)

1. 文件分块 将大文件切分成较小的片段&#xff08;通常称为分片或块&#xff09;&#xff0c;然后逐个上传这些分片。这种方法可以提高上传的稳定性&#xff0c;因为如果某个分片上传失败&#xff0c;只需要重新上传该分片而不需要重新上传整个文件。同时&#xff0c;分片上传…

linux 搭建知识库文档系统 mm-wiki

目录 一、前言 二、常用的知识库文档工具 2.1 PingCode 2.2 语雀 2.3 Tettra 2.4 Zoho Wiki 2.5 Helpjuice 2.6 SlimWiki 2.7 Document360 2.8 MM-Wiki 2.9 其他工具补充 三、MM-Wiki 介绍 3.1 什么是MM-Wiki 3.2 MM-Wiki 特点 四、搭建MM-Wiki前置准备 4.1 前置…

带环链表及例题

环形链表&#xff0c;链表中的尾节点指向链表中的某个节点导致形成循环的链表。 通过图可以这样表示。 我们一般采用快慢指针的方式解决带环链表的题目&#xff0c;下面直接上例题 环形链表 力扣链接&#xff1a; . - 力扣&#xff08;LeetCode&#xff09; 让我们判断一个…

渗透测试之sql注入绕过技巧

在sql注入中&#xff0c;通常会将某些关键的字符过滤掉&#xff0c;以此来达到预防sql注入的目的。这时我们就可以通过某些技巧来绕过。 绕过技巧1&#xff1a; 这个是在某个比赛中出现的&#xff0c;当时并没有多少人成功绕过。 如下&#xff1a; 如下图&#xff1a;在php中…

Django前后端项目部署

Django前后端分离项目部署 本文采用阿里云服务器&#xff0c;centos7.9操作系统 本文默认服务器已安装nginx,mysql并且可以正常运行Django vue uwsgi nginx注意&#xff1a;先部署后端&#xff0c;使用postman测试请求没有问题后在修改vue中的axios文件中baseURL&#xff0…

PLC通过Modbus转Profinet网关连接变频器与电机通讯

Modbus转Profinet网关&#xff08;XD-MDPN100&#xff09;是一种能够实现Modbus协议和Profinet协议之间转换的设备。Modbus转Profinet网关可提供单个或多个RS485接口&#xff0c;PLC作为控制中枢&#xff0c;变频器作为控制电机转速&#xff0c;通过Modbus转Profinet网关&#…

美国站群服务器的定义、功能以及在网站运营中的应用

美国站群服务器的定义、功能以及在网站运营中的应用 在当今互联网的蓬勃发展中&#xff0c;站群服务器已成为网站运营和SEO优化中不可或缺的重要工具之一。尤其是美国站群服务器&#xff0c;在全球范围内备受关注。本文将深入探讨美国站群服务器的定义、功能以及在网站运营中的…

【城市】应届生第一次打工需要知道的常识(薪资结构,社保,五险二金,个税,专项扣除)

【城市】应届生第一次打工需要知道的常识&#xff08;薪资结构&#xff0c;社保&#xff0c;五险二金&#xff0c;个税&#xff0c;专项扣除&#xff09; 文章目录 1、什么是应届生 & 如何界定应届生2、社保&#xff0c;五险一金&#xff0c;五险二金3、薪资结构&#xff0…

运存与内存?内存与存储? 傻傻分不清

主页: 元存储博客 图片来源: Blackblaze 文章目录 名词为何“内存”的含义混乱内存和存储含义内存和存储作用RAM 与 存储差异速度和性能容量和尺寸易失性和持久性常见问题:总结名词 内存: Memory,如内存条 存储器: Storage, 包括硬盘等 为何“内存”的含义混乱 <

class089 贪心经典题目专题1【左程云算法】

class089 贪心经典题目专题1【左程云算法】 前言版权推荐class089 贪心经典题目专题1code1 179. 最大数code2 1029. 两地调度code3 1553. 吃掉 N 个橘子的最少天数code4 253. 会议室IIcode5 630. 课程表 IIIcode6 1167. 连接棒材的最低费用(leetcode测试)code6 P1090 连接棒材的…

C进阶-数据的存储

文章目录 1. 数据类型介绍类型的基本归类 2. 整型在内存中的存储:原码,反码,补码2.1. 原码,反码,补码 2.2. 大小端介绍大端字节序存储小端字节序存储例:设计程序判断是大端还是小端? 2.3. 练习练习1练习2练习3练习4 3. 浮点型在内存中的存储 1. 数据类型介绍 数据类型数据类型…

YARN详解

YARN 简介 YARN 是Yet Another Resource Negotiator的缩写。 YARN是第二代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的;通俗讲就是资源管理器. YARN核心思想: 将 MR1 中资源管理和作业调度两个功能分…