经典网络解读——Efficientnet

论文:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(2019.5)
作者:Mingxing Tan, Quoc V. Le
链接:https://arxiv.org/abs/1905.11946
代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

Efficientnet升级版本EfficientnetV2解读

最近项目上用到,由于之前模型采用IResnet50做识别,在rv1126上量化成int16时间上不满足要求,量化成int8推理造成的精度下降又太大,不能接受,遂想到替换更高效的网络,网上一搜就看到下面这张图,很直观。
在这里插入图片描述
efficientnet-B0比ResNet-50的精度更高且flops更少,且一直扩充到efficientnet-B3都是如此,类比IResnet50,估计efficientnet也比它快;由于efficientnet是分类网络,但我们是识别任务,需要提取feature,所以需做修改,下面是量化成int16后的具体推理时间,与我的猜想基本一致。

网络结构转int16的rknn模型大小(M)input_sizerv1126上用NPU推理时间(ms)
iResnet-50112x11270
efficientnet-b0(仿照iresnet改造,卷积最后一层,直接flatten)25.8112x11217
efficientnet-b0(直接将最后类别数改成num_features数量,精度不行)9.3112x11213
efficientnet-b1(仿照iresnet改造,卷积最后一层,直接flatten)33112x11225
efficientnet-b2(仿照iresnet改造,卷积最后一层,直接flatten)39.7112x11228
efficientnet-b3(仿照iresnet改造,卷积最后一层,直接flatten)47.3112x11235

虽然之前经常用这个网络,但是由于没涉及到量化,很少留意到这些细节,所以仔细解读一下efficientnet这个经典网络。


文章目录

  • 1、算法概述
  • 2、Efficientnet细节
    • 2.1 单个维度模型缩放
    • 2.2 混合缩放
    • 2.3 Efficientnet结构
  • 3、实验
    • 3.1 Scaling up MobileNets and ResNets
    • 3.2 Efficientnet在ImageNet上分类精度
    • 3.3 Efficientnet在CPU上的延迟
    • 3.4 Efficientnet的迁移学习能力


1、算法概述

Efficientnet是谷歌针对于模型缩放相关的探索提出的分类网络;在这之前的卷积神经网络(ConvNets)通常是在固定受限的资源下开发的,如果有更多的资源可用,则可以根据扩展以获得更好的准确性。该篇论文通过仔细平衡网络深度,宽度和分辨率之间的关系来获得更好的性能,并且在MobileNet和ResNet上验证了其有效性。论文作者通过神经架构搜索获得一个baseline模型(Efficientnet-B0),然后通过论文所提的模型缩放技术获得一系列缩放模型。这一系列模型在ImageNet分类数据集上的精度和参数量都比现如今最先进的卷积网络有了不小的提升。如下图,左图是精度和模型大小,右图是精度和flops。
在这里插入图片描述


2、Efficientnet细节

在这之前也有模型缩放相关的研究,例如将网络放大可以得到更好的性能,比如Resnet系列,通常来说Resnet200比Resnet18得到的分类精度好得多;但是之前的模型缩放通常只缩放三个维度(深度、宽度和图像大小)中的一个。虽然可以任意缩放两个或三个维度,但任意缩放需要繁琐的手动调优,并且仍然经常产生次优的精度和效率。虽然更大的网络能带来更高的精度,但是我们时常受到硬件内存限制,所以需要探索更高效的网络结构;如今“高效”网络结构有:SqueezeNets、MobileNets、ShuffleNets以及通过神经网络搜索得到的NASNet,但这些高效网络设计技巧目前尚不清楚如何推广应用到大规模网络。
本论文通过实验验证得到结论:平衡模型缩放过程中的深度、宽度和分辨率是非常重要的,而且只是简单的通过模型缩放公式就可以得到它们之间的关系。关于网络宽度缩放、深度缩放、和输入图像分辨率缩放及综合缩放的示例图如下图所示:
在这里插入图片描述

2.1 单个维度模型缩放

网络深度用d表示,直觉上更深的卷积神经网络可以捕获更丰富、更复杂的特征,并能很好地泛化新任务。然而,由于梯度的消失,更深的网络也更难以训练;虽然现在的跳转连接(skip connection)和batch normalization技术一定程度上缓和了梯度消失问题,但是随着深度增加,精度提升的收益还是会递减,如下图(中);
网络宽度用w表示,缩放网络宽度通常用于小尺度网络结构,通道数“更宽”的网络往往能够捕获更细粒度的特征,并且更容易训练;极宽但较浅的网络往往难以捕捉更高级的特征。而且当网络变得更宽即w更大时,准确性很快会饱和,如下图(左)所示;
网络输入分辨率用r表示,网络接收更高的分辨率,可以捕获更细粒度的特征。但随着分辨率不断提高,其精度收益率也会递减最终达到饱和。如下图(右)所示;
在这里插入图片描述

2.2 混合缩放

作者通过实验得出:对于更高分辨率的图像,我们应该增加网络深度,这样有利用在更大图像上用更大的感知域捕获更多像素的特征。相应的也应该同时增加网络宽度,以便于在高分辨率图像中捕获更多像素的更细粒度的特征。如下图所示:
在这里插入图片描述
所以我们需要协调和平衡不同的缩放维度,而不是传统的单一维度缩放。
作者通过以下公式设置三个维度的限制,利用网络结构搜索搜出最佳的d,w,r匹配。
在这里插入图片描述

2.3 Efficientnet结构

和设计MnasNet一样,作者也是通过网络搜索得到最佳的基线模型efficientnet-B0,与它不同的是设置的搜索最优目标不一样,efficientnet-B0是以最佳flops为目标,而前者是最小推理速度。搜出来的efficientnet-B0结构与MnasNet结构相似,主要组成部分为mobile inverted bottleneck MBConv,其结构如下表所示:
在这里插入图片描述
得到efficientnet-B0后,应用本文所提的模型缩放技术,分以下两步得到B1至B7。
在这里插入图片描述
论文中说,也可以直接通过网络搜索得到更大规模的网络结构,但这样做太耗费资源,作者提出的规则模型缩放技术,可以通过先搜索小规模网络结构,然后通过模型缩放得到一系列更大规模的网络结构,这样做解决了这个难题。


3、实验

3.1 Scaling up MobileNets and ResNets

作者首先在已有的分类算法网络结构上验证提出的模型缩放方法,评估其在ImageNet上的Top-1及Top-5准确率,实验结果如下:
在这里插入图片描述
从实验结果可以看出,相对于Baseline模型,单纯扩充w、d或者r,模型的Top-1准确率是有一定提升的,但相对于采用本论文所提的组合扩充方式,组合扩充方式还是有精度方面的优势。

3.2 Efficientnet在ImageNet上分类精度

在这里插入图片描述

3.3 Efficientnet在CPU上的延迟

在这里插入图片描述

3.4 Efficientnet的迁移学习能力

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/585182.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

超简单的Spring-mvc示例

超简单的Spring-mvc示例

【C/C++】动态内存管理(C:malloc,realloc,calloc,free || C++:new,delete)

🔥个人主页: Forcible Bug Maker 🔥专栏: C | | C语言 目录 前言C/C内存分布C语言中的动态内存管理:malloc/realloc/realloc/freemallocrealloccallocfree C中的动态内存管理:new/deletenew和delete操作内…

红魔8/8Pro/8SPro手机升级安卓14版RedMagic9.0系统+降级出厂救砖刷机

红魔8系列手机也终于引来了安卓14系统的更新,该系统为最新的RedMagic9.0,目前属于公测版本,如果你已经升级了官方UI8.0最新版系统,并且拥有公测资格,可以直接在线检测到最新版UI9.0系统。9.0系统目前对比之前的8.0的版…

MFRC50001T 封装SOP-32 高性能非接触式读写芯片

MFRC50001T是由NXP Semiconductors(恩智浦半导体)生产的一款高性能非接触式读写芯片。这款芯片主要针对13.56 MHz频段的RFID(无线射频识别)和MIFARE Classic协议,支持ISO/IEC 14443 Type A标准的多层应用。MFRC50001T芯…

HTML:认识HTML及基本语法

目录 1. HTML介绍 2. 关于软件选择和安装 3. HTML的基本语法 1. HTML介绍 HyperText Markup Language 简称HTML,意为:超文本标记语言 超文本:是指页面内可以包含的图片,链接,声音,视频等内容 标记&am…

vue2插件之@lucky-canvas/vue,大转盘、抽奖、老虎机

提示:vue2插件 文章目录 [TOC](文章目录) 前言一、查看nodejs版本二、创建项目三、大转盘四、抽奖五、老虎机六、官网总结 前言 lucky-canvas/vue 一、查看nodejs版本 node -v二、创建项目 1、安装插建 npm install lucky-canvas/vue --save2、目录结构 3、引用…

AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验

系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概…

stable diffusion controlnet前处理中的图像resize

在SD controlnet应用中,一般都要先安装controlnet_aux,并在项目代码中import相关前处理模块,如下所示。 在对control image进行前处理(比如找边缘,人体特征点)之前,往往会图像进行resize&#x…

【论文阅读——基于拍卖的水平联邦学习后付款激励机制设计与声誉和贡献度测量】

1.原文名称 Auction-Based Ex-Post-Payment Incentive Mechanism Design for Horizontal Federated Learning with Reputation and Contribution Measurement 2.本文的贡献 我们提出了一种贡献度测量方法。我们建立了一个声誉系统。声誉易于下降,难以提高。结合声…

Redis源码学习记录:列表 (ziplist)

ziplist redis 源码版本&#xff1a;6.0.9。ziplist 的代码均在 ziplist.c / ziplist.h 文件中。 定义 ziplist总体布局如下&#xff1a; <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend> zlbytes&#xff1a;uin…

stm32单片机开发一、中断之外部中断实验

stm32单片机的外部中断和定时器中断、ADC中断等都由stm32的内核中的NVIC模块控制&#xff0c;stm32的中断有很多中&#xff0c;比如供电不足中断&#xff0c;当供电不足时&#xff0c;会产生的一种中断&#xff0c;这么多中断如果都接在CPU上&#xff0c;或者说CPU去处理&#…

普乐蛙元宇宙VR体验馆设备集体亮相VR文旅景区展

普乐蛙全国巡展又双叒叕开始了! 这次来到的是“好客山东”↓↓ 山东2024休闲旅游产业展 4月25日至27日&#xff0c;2024休闲旅游产业展在临沂国际博览中心举办。本次展会以“潮购文旅好品&#xff0c;乐享时尚生活”为主题&#xff0c;汇聚全国文旅产业上下游500多家企业、上万…

基于FCN网络实现的多类别图像分割任务

1、前言 FCN 作为图像分割的开山之作&#xff0c;将分割任务作为逐个像素点的分类任务 之前完成了基于unet、resnetunet、deeplab等等网络的分割任务&#xff0c;具体的可以参考本专栏&#xff1a; 图像分割_听风吹等浪起的博客-CSDN博客 因为FCN网络的实现较为复杂&#xf…

【阿里笔试题汇总】[全网首发] 2024-04-29-阿里国际春招笔试题-三语言题解(CPP/Python/Java)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新阿里国际近期的春秋招笔试题汇总&#xff5e; &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x…

访学/博后/联培博士关注|不同国家的英语口音辨识度训练

在访问学者、博士后及联合培养的申请过程中&#xff0c;接收方多数都要求英文面试。如果导师的母语为非英语国家&#xff0c;将会带有口音&#xff0c;这样更增加了英语面试难度。如何提升不同国家的英语口音辨识度&#xff0c;使自己的英语表达更加流利&#xff0c;知识人网小…

01数学建模 -线性规划

1.1线性规划–介绍 翻译翻译什么叫惊喜 1.2线性规划–原理 拉格朗日乘数法手算 最值化 f ( x , y ) , s . t . g ( x , y ) c , 引入参数 λ &#xff0c;有&#xff1a; F ( x , y , λ ) f ( x , y ) λ ( g ( x , y ) − c ) 再将其分别对 x , y , λ 求导&#xff0c…

第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解

解题思路 首先&#xff0c;我们考虑一下整个数组都是由质数构成的情况。 当我们要将质数 x x x 向后移 k k k 个时&#xff0c;如果我们可以知道质数 x x x 在质数数组的下标 j j j&#xff0c;那么就可以通过 p r i m e s [ j k ] primes[j k] primes[jk] 来获取向后…

远程桌面的端口配置与优化

在现代企业环境中&#xff0c;远程桌面连接已成为日常工作中不可或缺的一部分。然而&#xff0c;随着网络攻击的增加&#xff0c;确保远程桌面连接的安全性变得尤为重要。其中一个关键的安全因素是端口配置。 一、远程桌面默认端口 远程桌面协议&#xff08;RDP&#xff09;默…

vue2迁移到vue3,v-model的调整

项目从vue2迁移到vue3&#xff0c;v-model不能再使用了&#xff0c;需要如何调整&#xff1f; 下面只提示变化最小的迁移&#xff0c;不赘述vue2和vue3中的常规写法。 vue2迁移到vue3&#xff0c;往往不想去调整之前的代码&#xff0c;以下就使用改动较小的方案进行调整。 I…

无人机反制:雷达探测+信号干扰器技术详解

固定翼无人机、旋翼无人机等&#xff0c;可折叠式无机、DIY无人机等。黑飞&#xff0c;监管困难给航空业带来了诸多隐患&#xff1b;给恐怖袭击及间谍侦察带来新的方式、引发了各国地区政府的忧虑&#xff0c;在中国存在的问题更加严峻。 反无人飞行器防御系统(AUDS)&#xff0…