Pandas数据可视化 - Matplotlib、Seaborn、Pandas Plot、Plotly

可视化工具介绍

让我们一起探讨Matplotlib、Seaborn、Pandas Plot和Plotly这四个数据可视化库的优缺点以及各自的适用场景。这有助于你根据不同的需求选择合适的工具。

1. Matplotlib

优点:

  • 功能强大:几乎可以用于绘制任何静态、动画和交互式图表。
  • 高度可定制:提供了细粒度的控制,可以精确调整图表的每个元素。
  • 广泛的社区支持:由于长时间存在和广泛使用,有大量的教程和资源。

缺点:

  • 学习曲线:初学者可能会觉得配置和语法复杂。
  • 样式:默认样式不如一些现代库吸引人,需要手动调整以达到现代美观的视觉效果。

适用场景:

  • 需要对图形进行精细控制的学术论文和专业报告。
  • 对图表外观有特定需求的项目。
2. Seaborn

优点:

  • 美观的默认设置:默认配置比Matplotlib更现代,更吸引人。
  • 简化创建复杂图表的接口:如分布图和矩阵图,适合进行统计数据可视化。
  • 良好的集成:与Pandas数据结构紧密集成,便于处理DataFrame。

缺点:

  • 定制能力有限:虽然比Matplotlib简单,但在高级定制性方面不如Matplotlib灵活。
  • 图表类型有限:主要专注于统计图表,其他类型的图表可能不支持。

适用场景:

  • 快速探索性数据分析。
  • 统计数据可视化,特别是需要展示数据分布和多变量关系的场景。
3. Pandas Plot

优点:

  • 易用性:直接在DataFrame和Series上调用.plot()进行绘图,极大简化了数据可视化的步骤。
  • 足够的图表类型:支持多种基础图表,满足基本分析需求。

缺点:

  • 功能有限:缺少高级图表和定制选项。
  • 依赖Matplotlib:继承了Matplotlib的一些限制,比如样式和交互性。

适用场景:

  • 快速数据探索和初步分析。
  • 需要从Pandas直接生成基本图表的场景。
4. Plotly

优点:

  • 交互性强:支持动态图表和交互操作,如缩放、平移和悬停提示。
  • 美观且现代:默认图表样式现代且具吸引力。
  • 支持Web集成:易于嵌入网页和应用程序。

缺点:

  • 性能:复杂图表在某些设备上可能响应较慢。
  • 学习曲线:功能丰富但需要时间学习如何有效使用。

适用场景:

  • 需要在网页或应用程序中嵌入交互式图表的场景。
  • 数据可视化产品或服务,用户交互是关键考量因素。

总结来说,选择哪个库取决于你的具体需求:Matplotlib适合需要高度定制的场景,Seaborn适用于快速且美观的统计图表展示,Pandas Plot最适合直接从数据框架快速绘图,而Plotly则是在需要强交互性和吸



Matplotlib

Matplotlib 是一个非常强大的Python绘图库,用于创建高质量的图表。它提供了丰富的模块和函数来制作图形和绘图。

常用方法和参数
  1. plt.plot(): 绘制线形图。

    • x, y: 输入数据。
    • color: 线条颜色。
    • label: 图例标签。
    • linewidth: 线条宽度。
    • linestyle: 线条样式。
  2. plt.scatter(): 绘制散点图。

    • x, y: 输入数据。
    • s: 点的大小。
    • color: 点的颜色。
    • marker: 点的形状。
  3. plt.bar(): 绘制条形图。

    • x, height: x 轴数据和高度。
    • width: 条的宽度。
    • color: 条的颜色。
    • label: 图例标签。
  4. plt.hist(): 绘制直方图。

    • x: 输入数据。
    • bins: 分组数量。
    • color: 颜色。
    • alpha: 透明度。
  5. plt.xlabel(), plt.ylabel(): 设置x轴和y轴的标签。

示例:线形图绘制
import matplotlib.pyplot as plt

# 数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# 创建图形
plt.figure(figsize=(10, 5))
plt.plot(x, y, color='blue', linewidth=2, linestyle='-', marker='o', label='Data Line')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('Simple Line Plot')
plt.legend()
plt.grid(True)
plt.show()
运行结果解释

这段代码会生成一个简单的线形图,其中x和y数据点用蓝色线条连接。每个数据点用圆形标记。图中还包含了x轴和y轴标签、标题、图例以及网格线。
在这里插入图片描述

常见问题及解决方案

  1. 问题: 图表中的文字重叠。

    • 解决方案: 使用plt.tight_layout()或调整plt.subplots_adjust()参数。
  2. 问题: 图例遮挡了图形的一部分。

    • 解决方案: 使用plt.legend(loc='best')自动找到最佳位置。
  3. 问题: 需要保存图表为图片文件。

    • 解决方案: 使用plt.savefig('filename.png')保存图表。
  4. 问题: 中文显示乱码。

    • 解决方案: 设置Matplotlib的字体参数,使用支持中文的字体。
  5. 问题: 图表的大小不合适。

    • 解决方案: 调整plt.figure(figsize=(width, height))中的尺寸参数。



Seaborn

Seaborn 是专门为统计图表设计的,提供了更多的图表类型和美化功能。它与Pandas数据结构紧密集成,使得数据探索更加方便。

常用方法和参数
  1. sns.lineplot(): 绘制线形图。

    • x, y: 输入数据。
    • hue: 用不同颜色表示不同类别。
    • style: 线条样式,根据分类变化。
    • markers: 每个点的标记。
  2. sns.scatterplot(): 绘制散点图。

    • x, y: 输入数据。
    • hue: 根据分类变化颜色。
    • style: 根据分类变化点的形状。
    • size: 点的大小。
  3. sns.barplot(): 绘制条形图。

    • x, y: 输入数据。
    • hue: 根据分类变化颜色。
    • palette: 颜色方案。
  4. sns.histplot(): 绘制直方图。

    • data: 输入数据。
    • bins: 分组数量。
    • kde: 是否显示核密度估计。
  5. sns.boxplot(): 绘制箱型图。

    • x, y: 输入数据。
    • hue: 根据分类变化颜色。
示例:多变量散点图
import seaborn as sns
import matplotlib.pyplot as plt

# 数据
tips = sns.load_dataset('tips')

# 创建图形
sns.scatterplot(data=tips, x="total_bill", y="tip", hue="time", style="time", size="size")
plt.title('Scatter Plot with Seaborn')
plt.show()
运行结果解释

这个示例中,我们使用Seaborn加载了内置的“tips”数据集,并创建了一个散点图,其中包含了不同时间段(午餐和晚餐)的总账单和小费信息。颜色和点的样式根据时间变化,点的大小表示桌子上的人数。
在这里插入图片描述

常见问题及解决方案

  1. 问题: Seaborn图形的样式与Matplotlib不一致。

    • 解决方案: 使用sns.set()来设置默认的图形样式,使其与Matplotlib协调。
  2. 问题: 图例太大或位置不合适。

    • 解决方案: 使用plt.legend(loc='upper right', bbox_to_anchor=(1, 1))调整图例位置和大小。
  3. 问题: 密度图显示不平滑。

    • 解决方案: 在sns.kdeplot()中增加bw_adjust参数来调整带宽。
  4. 问题: 柱状图中的柱子重叠。

    • 解决方案: 调整width参数来减少柱子的宽度。
  5. 问题: 要分别对比多个分类变量。

    • 解决方案: 使用sns.pairplot()绘制多变量分布。



现在我们来探讨 Pandas Plot,这是Pandas内置的绘图方法,建立在Matplotlib上。这个功能使得直接从DataFrame和Series数据结构进行图形绘制变得非常简便。

Pandas Plot

Pandas 的 .plot() 方法提供了一种快速绘图的方式,支持多种图表类型,非常适合于初步的数据分析。

常用方法和参数

.plot() 方法提供了多种绘图类型,通过 kind 参数来指定:

  1. kind='line': 绘制线形图。
  2. kind='scatter': 绘制散点图,需要指定 xy
  3. kind='bar'kind='barh': 分别绘制垂直和水平的条形图。
  4. kind='hist': 绘制直方图。
  5. kind='box': 绘制箱型图。
  6. kind='pie': 绘制饼图。

其他常用参数包括:

  • color: 设置颜色。
  • figsize: 图形的大小。
  • title: 图表的标题。
  • legend: 是否显示图例。
  • grid: 是否显示网格。
示例:条形图
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 数据
data = pd.DataFrame({
    'A': np.random.rand(5),
    'B': np.random.rand(5)
})
# 创建条形图
ax = data.plot(kind='bar', figsize=(10, 5), title="Bar Chart Example")
ax.set_xlabel("Index")
ax.set_ylabel("Value")
ax.legend(title="Legend")
plt.show()
运行结果解释

这段代码生成了一个包含两组数据(A和B)的条形图。每个索引的位置显示了A和B的值,颜色不同以区分两者。
在这里插入图片描述

常见问题及解决方案

  1. 问题: 想要在条形图上显示数值。

    • 解决方案: 在绘图之后,使用ax.text()方法在条形图的每个条上添加文本。
  2. 问题: 想要更改图例的位置。

    • 解决方案: 使用ax.legend(loc='upper right')来指定图例的位置。
  3. 问题: 需要调整轴的刻度标签的角度。

    • 解决方案: 使用plt.xticks(rotation=45)来旋转x轴标签。
  4. 问题: 想要改变图表的风格。

    • 解决方案: 使用plt.style.use('ggplot')来应用不同的样式。
  5. 问题: 图表保存为图片文件。

    • 解决方案: 使用plt.savefig('filename.png')保存图表。



Plotly

Plotly 支持多种图表类型,包括线形图、散点图、条形图、饼图、箱型图等,都可以交互式地操作,如缩放、平移和悬停提示等。

常用方法和参数
  1. px.line(): 创建线形图。

    • data_frame: 数据框架。
    • x, y: x和y轴的数据列。
    • color: 根据分类变化颜色。
    • title: 图表标题。
  2. px.scatter(): 创建散点图。

    • data_frame: 数据框架。
    • x, y: x和y轴的数据列。
    • color: 根据分类变化颜色。
    • size: 点的大小。
    • hover_data: 悬停时显示的额外数据。
  3. px.bar(): 创建条形图。

    • data_frame: 数据框架。
    • x, y: x和y轴的数据列。
    • color: 根据分类变化颜色。
    • title: 图表标题。
  4. px.histogram(): 创建直方图。

    • data_frame: 数据框架。
    • x: x轴的数据列。
    • nbins: 条的数量。
    • color: 颜色。
  5. px.box(): 创建箱型图。

    • data_frame: 数据框架。
    • y: y轴的数据列。
    • color: 根据分类变化颜色。
示例:散点图
import plotly.express as px

# 数据
df = px.data.iris()

# 创建散点图
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", size="petal_length", hover_data=['petal_width'])
fig.update_layout(title='Iris Dataset Scatter Plot')
fig.show()
运行结果解释

这个示例使用了内置的Iris花卉数据集来创建一个散点图,其中x轴是花萼宽度,y轴是花萼长度。不同的花种用不同的颜色表示,花瓣长度决定了点的大小,悬停时可以看到花瓣宽度的信息。这个图表是交互式的,可以缩放和移动视图。
在这里插入图片描述

常见问题及解决方案

  1. 问题: 图表加载很慢。

    • 解决方案: 减少数据点的数量或优化数据处理步骤。
  2. 问题: 在网页中嵌入Plotly图表。

    • 解决方案: 使用Plotly的plotly.io.to_html()方法生成HTML代码,然后嵌入网页。
  3. 问题: 要调整图表的布局和样式。

    • 解决方案: 使用fig.update_layout()方法来自定义图表的各种布局属性。
  4. 问题: 想要保存图表为静态图片。

    • 解决方案: 使用fig.write_image('filename.png')保存图表。
  5. 问题: 如何创建动态更新的图表。

    • 解决方案: 使用Plotly Dash框架来创建可交互且动态更新的图表应用。



拓展

  • Bokeh: 专为网页设计的交互式图表库,Bokeh可以快速生成互动图表,非常适合用于构建复杂的可视化数据探索接口。
  • Altair: 一个声明式的统计可视化库,由Vega和Vega-Lite图表的基础上构建,Altair的API设计旨在创建清晰且可重复的图表。

更多问题咨询

Cos机器人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/584292.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【酱浦菌-爬虫项目】爬取学术堂宏观经济学论文原文

前言 首先给大家放出完整代码,然后下面就是用jupyter写的代码。实际上在写的时候用的是jupyter写的,因为感觉jupyter写的时候更加的流畅,每一步运行的细节都能保存下来,更方便学习理解。 完整代码: import os impo…

基于深度学习检测恶意流量识别框架(80+特征/99%识别率)

基于深度学习检测恶意流量识别框架 目录 基于深度学习检测恶意流量识别框架简要示例a.检测攻击类别b.模型训练结果输出参数c.前端检测页面d.前端训练界面e.前端审计界面(后续更新了)f.前端自学习界面(自学习模式转换)f1.自学习模式…

Spring管理第三方依赖

在开发中,我们常需要根据业务需求导入我们需要的第三方依赖包,本文主要以导入druid数据库来连接池为案例讲解有关spring管理第三方依赖 目录 纯注解文件注入 1.在pom.xml中导入依赖 2.在com.lcyy包下建立一个config包用于配置类的实现 3.在config包下…

2024年第十五届蓝桥杯江苏省赛回顾

呜呜呜~~~ 我在考完了后感觉自己直接炸了:好多学到的算法都没有用上,几乎所有的题目都是暴力的。。。 最后十几分钟对于一道dp算法终于有思路了,但是。。匆匆忙忙之间就是没有调试出来。(还是交了一道暴力[旋风狗头]直接哭死~~&…

微信小程序开发核心:样式,组件,布局,矢量图标

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

Zynq 7000 系列之启动模式—NAND启动

NAND启动是一种使用NAND闪存进行设备启动的方式。NAND闪存是一种非易失性存储设备,广泛用于嵌入式系统、计算机和其他电子设备中。由于NAND闪存具有高速读写和较高的存储密度等特点,使得NAND启动成为了一种高效且常用的启动方式。 1 特点 NAND启动具有…

【Spring】Spring中AOP的简介和基本使用,SpringBoot使用AOP

📝个人主页:哈__ 期待您的关注 一、AOP简介 AOP的全称是Aspect-Oriented Programming,即面向切面编程(也称面向方面编程)。它是面向对象编程(OOP)的一种补充,目前已成为一种比较成…

Milvus Cloud 向量数据库Reranker成本比较和使用场景

成本比较:向量检索 v.s. Cross-encoder Reranker v.s. 大模型生成 虽然 Reranker 的使用成本远高于单纯使用向量检索的成本,但它仍然比使用 LLM 为同等数量文档生成答案的成本要低。在 RAG 架构中,Reranker 可以筛选向量搜索的初步结果,丢弃掉与查询相关性低的文档,从而有…

电商技术揭秘三十九:电商智能风控技术架构设计

相关系列文章 电商技术揭秘相关系列文章合集(1) 电商技术揭秘相关系列文章合集(2) 电商技术揭秘二十八:安全与合规性保障 电商技术揭秘二十九:电商法律合规浅析 电商技术揭秘三十:知识产权保…

简单分享,豆瓣小组,可能被你忽视的获取精准流量渠道!

⾖瓣⼩组:精准流量的隐藏宝藏 探索互联网世界的每一个角落,你会发现总有那么一些被忽视的宝藏,等待着被发现者的光临。今天,我要和大家分享的这个宝藏,就是⾖瓣⼩组——一个你可能未曾注意到的精准流量渠道。 ⾖瓣平…

2024最新UI发卡盗U/支持多语言/更新UI界面/支持多个主流钱包

本文来自:2024最新UI发卡盗U/支持多语言/更新UI界面/支持多个主流钱包 - 源码1688 应用介绍 简介: 2024最新UI发卡盗U/支持多语言/更新UI界面/支持多个主流钱包 自行检查后门,最好是部署智能合约后用合约地址来授权 包含转账支付页面盗U授…

蓝网科技临床浏览系统 deleteStudy SQL注入漏洞复现(CVE-2024-4257)

0x01 产品简介 蓝网科技临床浏览系统是一个专门用于医疗行业的软件系统,主要用于医生、护士和其他医疗专业人员在临床工作中进行信息浏览、查询和管理。 0x02 漏洞概述 蓝网科技临床浏览系统 deleteStudy接口处SQL注入漏洞,未经身份验证的恶意攻击者利用 SQL 注入漏洞获取…

HEVC/H.265视频编解码学习笔记–框架及块划分关系

前言 由于本人在学习视频的过程中,觉得分块单元太多搞不清楚其关系,因此本文着重记录这些分块单元的概念以及关联。 一、框架 视频为一帧一帧的图像,其编码的主要核心是压缩空间以及时间上的冗余。因此,视频编码有帧内预测和帧间…

TCP协议在物联网中实战

一、TCP协议介绍 网上对TCP协议介绍众多,本人按照自己的理解简单介绍一下。 TCP(Transmission Control Protocol, 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输控制层通信协议。 1.1 协议机制 1.1.1 三次握手 &…

面试重点1:打开网页点击URL,返回页面内容,从网络协议层面讲解一下

在这种场景下,从网络协议层面来讲解打开网页并点击 URL 的过程可以大致分为以下几个步骤: 1. DNS 解析 当你在浏览器中输入一个 URL(例如 https://www.example.com),首先浏览器会进行 DNS 解析,将域名解析…

前端VUE项目中使用async()用法是为什么?能不用吗?

使用 async 关键字来定义一个函数主要有几个原因: 支持 await 关键字: async 函数允许你在其中使用 await 关键字,这使得你可以在不阻塞程序执行的情况下,等待一个异步操作(如网络请求、文件读写等)的完成。…

JAVA基础---Stream流

Stream流出现背景 背景 在Java8之前,通常用 fori、for each 或者 Iterator 迭代来重排序合并数据,或者通过重新定义 Collections.sorts的 Comparator 方法来实现,这两种方式对 大数量系统来说,效率不理想。 Java8 中添加了一个…

Python量化炒股的获取数据函数—get_concept()

查询股票所属的概念板块函数get_concept(),利用该函数可以查询一只或多只股票所属的概念板块,其语法格式如下: get_concept(security, dateNone)security:标的代码。类型为字符串,形式如‘000001.XSHE’,或…

邦注科技 模具清洗机 干冰清洗机 干冰清洗设备原理介绍

干冰清洗机,这款神奇的清洁设备,以干冰颗粒——固态的二氧化碳,作为其独特的清洁介质。它的工作原理可谓独具匠心,利用高压空气将干冰颗粒推送至超音速的速度,犹如一颗颗银色的流星,疾速喷射至待清洗的物体…

攻防世界XCTF-WEB入门12题解题报告

WEB入门题比较适合信息安全专业大一学生,难度低上手快,套路基本都一样 需要掌握: 基本的PHP、Python、JS语法基本的代理BurpSuite使用基本的HTTP请求交互过程基本的安全知识(Owasp top10) 先人一步,掌握W…