rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。

量化环境

模型量化需要安装rk的工具包:
rockchip-linux/rknn-toolkit (github.com)
版本要根据开发板的固件支持程度来,如果二者不匹配,可能转出来的模型无法运行或者结果不对。

模型量化

rknn支持caffe,tensorflow,tflite,onnx,mxnet,pytorch等模型量化,下面以onnx为例,其他格式基本类似。即可以使用量化包带的可视化界面,也可以自行写代码,更推荐自己写代码,复用性和灵活性更强,对可视化界面一笔带过。

可视化量化工具

执行

python -m rknn.bin.visualization

image.png

选择对应格式,然后设置模型参数进行量化。
image.png

写代码量化

image.png

基础量化

最简单的量化方式如下,只需设置模型的均值、方差,载入原始模型,调用rknn.build接口,然后export_rknn即可。

from rknn.api import RKNN

if __name__ == '__main__':
	rknn=RKNN()
	# pre-process config
	print('--> config model')
	rknn.config(channel_mean_value='0 0 0 255',
				reorder_channel='0 1 2',
				target_platform=['rv1109'],
				#quantized_dtype="dynamic_fixed_point-i16"
				)
	print('done')

	# Load mxnet model
	onnx_model = 'yolov8n.onnx'
	print('--> Loading model')
	ret = rknn.load_onnx(onnx_model)
	if ret != 0:
		print('Load onnx_model model failed!')
		exit(ret)
	print('done')
	# Build model
	print('--> Building model')
	ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为False
	if ret != 0:
		print('Build model failed!')
		exit(ret)
	print('done')

	print('--> Export RKNN model')
	ret = rknn.export_rknn('yolov8n_nohead.rknn')
	if ret != 0:
		print('Export RKNN model failed!')
		exit(ret)
	print('done')
	rknn.release()

模型量化需要提供量化图片的列表,格式为每行是一张图片的路径, 一般需要几百张,如:

images/0.jpg
images/1.jpg

模型推理验证

有两种方式验证模型的结果,一种是连接开发板,在开发板上运行,可以实际测试模型的推理速度,需要USB连接开发板,一种是在PC端仿真,速度较慢,适合在没有开发板的情况下,验证模型结果是否正确。两种方式使用的代码大部分一样,区别是在PC端仿真时,模型要以pre_compile=False模式进行量化,init_runtime参数为targe=None。

import os
import sys
from rknn.api import RKNN
import cv2
import numpy as np
 
if __name__=="__main__":
    # Create RKNN object
    rknn = RKNN()
    print('--> Loading RKNN model')
    ret = rknn.load_rknn('yolov8.rknn')
    if ret != 0:
        print('Load  failed!')
        exit(ret)
    print('load done')
    # Init Runtime
    rknn.init_runtime(target="rv1109")#第二个参数device_id为开发板的设备id,不用填, targe=None时,代表PC仿真
	 image = cv2.imread("1.jpg")
	 outputs = rknn.inference(inputs=[image]) 
    rknn.release()

量化精度评估(逐层)

有些时候,量化损失可能过大,这时我们希望能够逐层比对量化后模型与原始模型,这时需要使用accuracy_analysis接口,这个接口第一个参数是图片列表文件,里面是测试图片的路径,第二个参数是比对结果保存路径:

from rknn.api import RKNN

if __name__ == '__main__':
	rknn=RKNN()
	# pre-process config
	print('--> config model')
	rknn.config(channel_mean_value='0 0 0 255',
				reorder_channel='0 1 2',
				target_platform=['rv1109'],
				#quantized_dtype="dynamic_fixed_point-i16"
				)
	print('done')

	# Load mxnet model
	onnx_model = 'yolov8n.onnx'
	print('--> Loading model')
	ret = rknn.load_onnx(onnx_model)
	if ret != 0:
		print('Load onnx_model model failed!')
		exit(ret)
	print('done')
	# Build model
	print('--> Building model')
	ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为False
	if ret != 0:
		print('Build model failed!')
		exit(ret)
	print('done')
	rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               
	print('--> Export RKNN model')
	ret = rknn.export_rknn('yolov8n_nohead.rknn')
	if ret != 0:
		print('Export RKNN model failed!')
		exit(ret)
	print('done')
	rknn.release()

比对文件如下:

Conv__model.0_conv_Conv_214_out0_nhwc_1_320_320_16.tensor    	eculidean_norm=0.030792	cosine_norm=0.999525	eculidean=202.926056	cosine=0.999526
Sigmoid__model.0_act_Sigmoid_213_Mul__model.0_act_Mul_212_out0_nhwc_1_320_320_16.tensor 	eculidean_norm=0.049676	cosine_norm=0.998766	eculidean=178.751434	cosine=0.998767
Conv__model.1_conv_Conv_210_out0_nhwc_1_160_160_32.tensor    	eculidean_norm=0.103382	cosine_norm=0.994656	eculidean=521.709229	cosine=0.994656
Sigmoid__model.1_act_Sigmoid_211_Mul__model.1_act_Mul_209_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.113702	cosine_norm=0.993536	eculidean=436.044495	cosine=0.993536
Conv__model.2_cv1_conv_Conv_208_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.120058	cosine_norm=0.992793	eculidean=351.808380	cosine=0.992794
Sigmoid__model.2_cv1_act_Sigmoid_207_Mul__model.2_cv1_act_Mul_205_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.169184	cosine_norm=0.985688	eculidean=262.819550	cosine=0.985688

混合量化

有些时候,使用默认量化方法模型精度损失较大,我们通过逐层分析,也知道了那些层的损失较大,这时就需要控制一些层不量化,或以更高精度模式量化,这种方式就是混合量化。
与基础量化相比,混合量化分为两步:
第一步是通过rknn.hybrid_quantization_step1(替换基础量化中的rknn.build)获得模型的量化配置文件:

rknn.hybrid_quantization_step1(dataset='../coco_resize.txt')

该接口会生成3个文件:

xx.data
xx.json
xx.quantization.cfg

其中,.cfg文件时量化配置文件,用于控制每一层的量化:

%YAML 1.2
---
# add layer name and corresponding quantized_dtype to customized_quantize_layers, e.g conv2_3: float32
customized_quantize_layers: {}
quantize_parameters:
    '@attach_Concat_/model.22/Concat_5/out0_0:out0':
        dtype: asymmetric_affine
        method: layer
        max_value:
        -   647.7965087890625
        min_value:
        -   0.0
        zero_point:
        -   0
        scale:
        -   2.5403785705566406
        qtype: u8
    '@Concat_/model.22/Concat_5_1:out0':
        dtype: asymmetric_affine
        method: layer
        max_value:
        -   647.7965087890625
        min_value:
        -   0.0
        zero_point:
        -   0
        scale:
        -   2.5403785705566406
        qtype: u8

对于不量化或者以其他精度模式量化的层,以字典形式写在customized_quantize_layers中,rv1109支持asymmetric_quantized-u8,dynamic_fixed_point-i8和dynamic_fixed_point-i16,默认情况下,以asymmetric_quantized-u8方式量化,在需要更高精度时,可用dynamic_fixed_point-i16,但速度会更慢。对于损失较大的层,我们可以尝试设置dynamic_fixed_point-i16量化(若float32则不量化):

customized_quantize_layers: {
    "Split_/model.22/Split_21": "dynamic_fixed_point-i16",
    "Reshape_/model.22/dfl/Reshape_20": "float32"
}

设置完成量化配置后,使用rknn.hybrid_quantization_step2进行量化:

from rknn.api import RKNN

if __name__ == '__main__':
	rknn=RKNN()
	# pre-process config
	print('--> config model')
	rknn.config(channel_mean_value='0 0 0 255',
				reorder_channel='0 1 2',
				target_platform=['rv1109'],
				#quantized_dtype="dynamic_fixed_point-i16"
				)
	print('done')

	# Load mxnet model
	onnx_model = 'yolov8n.onnx'
	print('--> Loading model')
	ret = rknn.load_onnx(onnx_model)
	if ret != 0:
		print('Load onnx_model model failed!')
		exit(ret)
	print('done')
	# Build model
	print('--> Building model')

	rknn.hybrid_quantization_step2(dataset='../coco_resize.txt',   model_input='torch_jit.json',
								   data_input="torch_jit.data",
								   model_quantization_cfg="torch_jit.quantization.cfg",
								   pre_compile=False)
	if ret != 0:
		print('Build model failed!')
		exit(ret)
	print('done')
	rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               
	print('--> Export RKNN model')
	ret = rknn.export_rknn('yolov8n_nohead.rknn')
	if ret != 0:
		print('Export RKNN model failed!')
		exit(ret)
	print('done')
	rknn.release()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/58336.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】(一)Spring设计核心思想

文章目录 一、初识 Spring1.1 什么是 Spring1.2 什么是 容器1.3 什么是 IoC 二、对 IoC 的深入理解2.1 传统程序开发方式存在的问题2.2 控制反转式程序的开发2.3 对比总结 三、对 Spring IoC 的理解四、DI 的概念4.1 什么是 DI4.2 DI 与 IoC的关系 一、初识 Spring 1.1 什么是…

flutter:Future、Stream、RxDart

Future 在Flutter中,Future是Dart语言中的一个类,用于表示异步操作的结果。与Future相关的的重要关键字包括async和await。 async:这个关键字用于在方法或函数声明前添加,以指示该方法为异步方法。在异步方法中,执行…

c++画出分割图像,水平线和垂直线

1、pca 找到图像某个区域的垂直线&#xff0c;并画出来 // 1、 斑块的框 血管二值化图&#xff0c;pca 找到垂直血管壁的直线, 还是根据斑块找主轴方向吧// Step 1: 提取斑块左右范围内的血管像素点坐标&#xff0c;std::vector<cv::Point> points;for (int y 0; y <…

用Apache Echarts展示数据

目录 1.后端代码 1.1 实体类&#xff1a; 1.2 SQL语句&#xff1a; 2.前端代码 2.1 安装 Apach Echarts安装包&#xff1a; 2.2 查找数据并赋值给Echarts 思路&#xff1a;后端查到数据&#xff0c;包装为map&#xff0c;map里有日期和每日就诊人数&#xff0c;返回给前端…

异或运算详解

异或运算详解 定义特性用途总结 定义 参与运算的两个数据,按二进制位进行 ^ 运算,如果两个相对应为值相同结果为0,否则为1 1 ^ 0 1 0 ^ 1 1 0 ^ 0 0 1 ^ 1 0特性 异或^运算只能用于数值(整数) x ^ 0 x x ^ x 0用途 两个值交换,而不用使用临时变量 a a ^ b; b b ^…

css在线代码生成器

这里收集了许多有意思的css效果在线代码生成器适合每一位前端开发者 布局&#xff0c;效果类&#xff1a; 网格生成器https://cssgrid-generator.netlify.app/ CSS Grid Generator可帮助开发人员使用CSS Grid创建复杂的网格布局。网格布局是创建Web页面的灵活和响应式设计的强…

【Linux】在服务器上创建Crontab(定时任务),自动执行shell脚本

业务场景&#xff1a;该文即为上次编写shell脚本的姊妹篇,在上文基础上,将可执行的脚本通过linux的定时任务自动执行,节省人力物力,话不多说,开始操作! 一、打开我们的服务器连接工具 连上服务器后,在任意位置都可以执行:crontab -e 如果没有进入编辑cron任务模式 根据提示查看…

Day01-作业(HTMLCSS)

作业1&#xff1a;通过HTML的标签及CSS样式&#xff0c;完成如下企业简介html页面的制作 A. 最终效果如下&#xff1a; B. 文字素材如下&#xff1a; 企业简介传智教育(股票代码 003032)&#xff0c;隶属江苏传智播客教育科技股份有限公司&#xff0c;注册资本4亿元&#xff0…

国产GOWIN实现低成本实现CSI MIPI转换DVP

CSI MIPI转换DVP&#xff0c;要么就是通用IC操作&#xff0c;如龙讯芯片和索尼芯片&#xff0c;但是复杂的寄存器控制器实在开发太累。对于FPGA操作&#xff0c;大部分都是用xilinx的方案&#xff0c;xilinx方案成本太高&#xff0c;IP复杂。 而用国产GOWIN已经实现了直接mipi …

腾讯云TencentOS Server镜像系统常见问题解答

腾讯云TencentOS Server镜像是腾讯云推出的Linux操作系统&#xff0c;完全兼容CentOS生态和操作方式&#xff0c;TencentOS Server操作系统为云上运行的应用程序提供稳定、安全和高性能的执行环境&#xff0c;TencentOS可以运行在腾讯云CVM全规格实例上&#xff0c;包括黑石物理…

jmeter之接口测试(http接口测试)

基础知识储备 一、了解jmeter接口测试请求接口的原理 客户端--发送一个请求动作--服务器响应--返回客户端 客户端--发送一个请求动作--jmeter代理服务器---服务器--jmeter代理服务器--服务器 二、了解基础接口知识&#xff1a; 1、什么是接口&#xff1a;前端与后台之间的…

【设计模式】单例模式

什么是单例模式&#xff1f; 保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点 单例模式的应用场景 1.整个程序的运行中只允许有一个类的实例&#xff1b; 2.需要频繁实例化然后销毁的对象。 3.创建对象时耗时过多或者耗资源过多&#xff0c;但又经常用到…

Python web实战 | 使用 Flask 实现 Web Socket 聊天室

概要 今天我们学习如何使用 Python 实现 Web Socket&#xff0c;并实现一个实时聊天室的功能。本文的技术栈包括 Python、Flask、Socket.IO 和 HTML/CSS/JavaScript。 什么是 Web Socket&#xff1f; Web Socket 是一种在单个 TCP 连接上进行全双工通信的协议。它是 HTML5 中的…

Flutter Flar动画实战

在Flare动面出现之前,Flare动画大体可以分为使用AnimationController控制的基础动画以及使用Hero的转场动画,如果遇到一些复杂的场景,使用这些动画方案实现起来还是有难度的。不过,随着Flutter开始支持Flare矢量动面,Flutter的动画开发也变得越来越简单。事实上,Flare动画…

2024考研408-计算机网络 第三章-数据链路层学习笔记

文章目录 前言一、数据链路层的功能1.1、数据链路层的研究思想1.2、数据链路层基本概念1.3、数据链路层功能概述&#xff08;5个功能&#xff09; 二 、组帧2.1、封装成帧以及发送帧的过程&#xff08;包含名词解释&#xff09;2.2、实现透明传输及四种组帧方法2.2.1、什么是透…

为什么马斯克和奥特曼都想重振加密货币?

1、前言 加密货币已经死了吗&#xff1f;这个问题的答案取决于谁来回答。一个加密爱好者会给你一百个不同的理由来解释为什么加密货币没有死。特斯拉CEO埃隆马斯克和OpenAI CEO 山姆奥特曼都对加密货币及其在塑造未来世界中的潜在作用有着浓厚的兴趣。 在过去很长一段时间里&…

涛思数据与拾贝云达成战略合作,携手赋能工业数字化转型

2023 年 7 月 27 日&#xff0c;北京涛思数据科技有限公司&#xff08;以下简称“涛思数据”&#xff09;与广州拾贝云科技有限公司&#xff08;以下简称“拾贝云”&#xff09;于广州签署战略合作协议。双方围绕电力行业的需求与痛点展开积极讨论&#xff0c;就如何量身打造最…

ZKML——EZKL团队分享

1. 引言 “ZKP之于数字签名” 类似于 “以太坊之于比特币”&#xff1a; 所谓数字签名&#xff0c;是指&#xff1a;“我知道某秘密secrets&#xff0c;使得 F(secrets, public inputs)pubic outputs”&#xff0c;其中F为fixed function&#xff08;固定函数&#xff09;。这…

ssl单向证书和双向证书校验测试及搭建流程

零、前提准备 首先了解下HTTP和HTTPS的区别&#xff1a; HTTPS与HTTP有什么不同&#xff1f; HTTP是过去很长一段时间我们经常用到的一种传输协议。HTTP协议传输的数据都是未加密的&#xff0c;这就意味着用户填写的密码、账号、交易记录等机密信息都是明文&#xff0c;随时…

SpringBoot项目修改中静态资源,只需刷新页面无需重启项目(附赠—热加载)

初衷 &#x1f4a2;初衷&#x1f4a2; 因为一遍遍修改并重启项目觉得很麻烦&#xff0c;所以刚开始就自己给项目配置了热加载&#xff0c;但奈何代码更新还是慢&#xff0c;还不如我重启一遍项目的速度&#xff0c;所以放弃了自己上网找到的热加载配置。直到我debugger前端代码…