STM32之HAL开发——ADC入门介绍

ADC简介

模数转换,即Analog-to-Digital Converter,常称ADC,是指将连续变量的模拟信号转换为离散的数字信号的器件,比如将模温度感器产生的电信号转为控制芯片能处理的数字信号0101,这样ADC就建立了模拟世界的传感器和数字世界的信号处理与数据转换的联系。

ADC 功能框图剖析

在这里插入图片描述

框图讲解采用从左到右的方式,跟 ADC 采集数据,转换数据,传输数据的方向
大概一致。

电压输入范围

ADC 输入范围为: VREF- ≤ VIN ≤ VREF+。由 VREF-、 VREF+ 、 VDDA 、 VSSA、这四个外部引脚决定。
我们在设计原理图的时候一般把 VSSA 和 VREF- 接地,把 VREF+ 和 VDDA 接 3V3,得到 ADC 的输入电压范围为: 0~3.3V。

输入通道

我们确定好 ADC 输入电压之后,那么电压怎么输入到 ADC?这里我们引入通道的概念,STM32的 ADC 多达 18 个通道,其中外部的 16 个通道就是框图中的 ADCx_IN0、ADCx_IN1…ADCx_IN5。这 16 个通道对应着不同的 IO 口,具体是哪一个 IO 口可以从手册查询到。
其中ADC1/2/3 还有内部通道: ADC1 的通道 16 连接到了芯片内部的温度传感器, Vrefint 连接到了通道 17。 ADC2 的模拟通道 16 和 17 连接到了内部的 VSS。ADC3 的模拟通道 9、 14、 15、 16 和 17 连接到了内部的 VSS。
在这里插入图片描述
外部的 16 个通道在转换的时候又分为规则通道和注入通道,其中规则通道最多有 16 路,注入通道最多有 4 路。

规则通道

规则通道:顾名思意,规则通道就是很规矩的意思,我们平时一般使用的就是这个通道,或者应该说我们用到的都是这个通道,没有什么特别要注意的可讲。

注入通道

注入,可以理解为插入,插队的意思,是一种不安分的通道。它是一种在规则通道转换的时候强行插入要转换的一种通道。如果在规则通道转换过程中,有注入通道插队,那么就要先转换完注入通道,等注入通道转换完成后,再回到规则通道的转换流程。这点跟中断程序很像,都是不安分的主。所以,注入通道只有在规则通道存在时才会出现。

转换顺序

规则序列

规则序列寄存器有 3 个,分别为 SQR3、 SQR2、 SQR1。 SQR3 控制着规则序列中的第一个到第六个转换,对应的位为: SQ1[4:0]~SQ6[4:0],第一次转换的是位 4:0 SQ1[4:0],如果通道 16 想第一次转换,那么在 SQ1[4:0] 写 16 即可。 SQR2 控制着规则序列中的第 7 到第 12 个转换,对应的位为: SQ7[4:0]~SQ12[4:0],如果通道 1 想第 8 个转换,则 SQ8[4:0] 写 1 即可。 SQR1 控制着规则序列中的第 13 到第 16 个转换,对应位为: SQ13[4:0]~SQ16[4:0],如果通道 6 想第 10 个转换,则SQ10[4:0] 写 6 即可。具体使用多少个通道,由 SQR1 的位 L[3:0] 决定,最多 16 个通道。
在这里插入图片描述

注入序列

注入序列寄存器 JSQR 只有一个,最多支持 4 个通道,具体多少个由 JSQR 的 JL[2:0] 决定。如果JL 的值小于 4 的话,则 JSQR 跟 SQR 决定转换顺序的设置不一样,第一次转换的不是 JSQR1[4:0],而是 JCQRx[4:0] , x = (4-JL),跟 SQR 刚好相反。如果 JL=00(1 个转换),那么转换的顺序是从 JSQR4[4:0] 开始,而不是从 JSQR1[4:0] 开始,这个要注意,编程的时候不要搞错。当 JL 等于4 时,跟 SQR 一样。
在这里插入图片描述

触发源

ADC 转换可以由 ADC 控制寄
存器 2: ADC_CR2 的 ADON 这个位来控制,写 1 的时候开始转换,写 0 的时候停止转换,这个
是最简单也是最好理解的开启 ADC 转换的控制方式。
除了这种庶民式的控制方法, ADC 还支持触发转换,这个触发包括内部定时器触发和外部 IO 触
发。触发源有很多,具体选择哪一种触发源,由 ADC 控制寄存器 2:ADC_CR2 的 EXTSEL[2:0] 和
JEXTSEL[2:0] 位来控制。 EXTSEL[2:0] 用于选择规则通道的触发源, JEXTSEL[2:0] 用于选择注入
通道的触发源。选定好触发源之后,触发源是否要激活,则由 ADC 控制寄存器 2:ADC_CR2 的
EXTTRIG 和 JEXTTRIG 这两位来激活。其中 ADC3 的规则转换和注入转换的触发源与 ADC1/2
的有所不同,在框图上已经表示出来。

转换时间

ADC 时钟

ADC 输入时钟 ADC_CLK 由 PCLK2 经过分频产生,最大是 14M,分频因子由 RCC 时钟配置寄存器 RCC_CFGR 的位 15:14 ADCPRE[1:0] 设置,可以是 2/4/6/8 分频,注意这里没有 1 分频。一般我们设置 PCLK2=HCLK=72M。

采样时间

ADC 使用若干个 ADC_CLK 周期对输入的电压进行采样,采样的周期数可通过 ADC 采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0] 位设置, ADC_SMPR2 控制的是通道 0~9,ADC_SMPR1 控制的是通道 10~17。每个通道可以分别用不同的时间采样。其中采样周期最小是1.5 个,即如果我们要达到最快的采样,那么应该设置采样周期为 1.5 个周期,这里说的周期就是 1/ADC_CLK。
ADC 的转换时间跟 ADC 的输入时钟和采样时间有关,公式为: Tconv = 采样时间 + 12.5 个周期。当 ADCLK = 14MHZ(最高),采样时间设置为 1.5 周期(最快),那么总的转换时间(最短) Tconv= 1.5 周期 + 12.5 周期 = 14 周期 = 1us。

数据寄存器

一切准备就绪后, ADC 转换后的数据根据转换组的不同,规则组的数据放在 ADC_DR 寄存器,注入组的数据放在 JDRx。

规则数据寄存器

ADC 规则组数据寄存器 ADC_DR 只有一个,是一个 32 位的寄存器,低 16 位在单 ADC 时使用,高 16 位是在 ADC1 中双模式下保存 ADC2 转换的规则数据,双模式就是 ADC1 和 ADC2 同时使用。在单模式下, ADC1/2/3 都不使用高 16 位。因为 ADC 的精度是 12 位,无论 ADC_DR 的高16 或者低 16 位都放不满,只能左对齐或者右对齐,具体是以哪一种方式存放,由 ADC_CR2 的11 位 ALIGN 设置。
ADC 规则组数据寄存器 ADC_DR 只有一个,是一个 32 位的寄存器,低 16 位在单 ADC 时使用,高 16 位是在 ADC1 中双模式下保存 ADC2 转换的规则数据,双模式就是 ADC1 和 ADC2 同时使用。在单模式下, ADC1/2/3 都不使用高 16 位。因为 ADC 的精度是 12 位,无论 ADC_DR 的高16 或者低 16 位都放不满,只能左对齐或者右对齐,具体是以哪一种方式存放,由 ADC_CR2 的11 位 ALIGN 设置。

注入数据寄存器

ADC 注入组最多有 4 个通道,刚好注入数据寄存器也有 4 个,每个通道对应着自己的寄存器,不会跟规则寄存器那样产生数据覆盖的问题。 ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由 ADC_CR2 的 11 位 ALIGN 设置。

中断

转换结束中断

数据转换结束后,可以产生中断,中断分为三种:规则通道转换结束中断,注入转换通道转换结束中断,模拟看门狗中断。其中转换结束中断很好理解,跟我们平时接触的中断一样,有相应的中断标志位和中断使能位,我们还可以根据中断类型写相应配套的中断服务程序。

模拟看门狗中断

当被 ADC 转换的模拟电压低于低阈值或者高于高阈值时,就会产生中断,前提是我们开启了模拟看门狗中断,其中低阈值和高阈值由 ADC_LTR 和 ADC_HTR 设置。例如我们设置高阈值是2.5V,那么模拟电压超过 2.5V 的时候,就会产生模拟看门狗中断,反之低阈值也一样。

DMA请求

规则和注入通道转换结束后,除了产生中断外,还可以产生 DMA 请求,把转换好的数据直接存储在内存里面。要注意的是只有 ADC1 和 ADC3 可以产生 DMA 请求。

电压转换

模拟电压经过 ADC 转换后,是一个 12 位的数字值,如果通过串口以 16 进制打印出来的话,可读性比较差,那么有时候我们就需要把数字电压转换成模拟电压,也可以跟实际的模拟电压(用万用表测)对比,看看转换是否准确。
我们一般在设计原理图的时候会把 ADC 的输入电压范围设定在: 0~3.3v,因为 ADC 是 12 位的,那么 12 位满量程对应的就是 3.3V, 12 位满量程对应的数字值是: 2^12。数值 0 对应的就是 0V。如果转换后的数值为 X , X 对应的模拟电压为 Y,那么会有这么一个等式成立: 2^12 / 3.3 = X/ Y, => Y = (3.3 * X ) / 2^12。

ADC 初始化结构体详解

ADC_InitTypeDef 结构体

typedef struct
{
uint32_t Mode; // ADC 工作模式选择
FunctionalState ScanConvMode; /* ADC 扫描(多通道)
或者单次(单通道)模式选择 */
FunctionalState ContinuousConvMode; // ADC 单次转换或者连续转换选择
uint32_t ExternalTrigConv; // ADC 转换触发信号选择
uint32_t DataAlign; // ADC 数据寄存器对齐格式
uint8_t NbrOfChannel; // ADC 采集通道数
} ADC_InitTypeDef;
  • Mode:配置 ADC 的模式,当使用一个 ADC 时是独立模式,使用两个 ADC 时是双模式,在双模式下还有很多细分模式可选,具体配置ADC_CR1:DUALMOD 位。
  • ScanConvMode:可选参数为 ENABLE 和 DISABLE,配置是否使用扫描。如果是单通道 AD 转换使用 DISABLE,如果是多通道 AD 转换使用 ENABLE,具体配置 ADC_CR1:SCAN 位。
  • ContinuousConvMode:可选参数为 ENABLE 和 DISABLE,配置是启动自动连续转换还是单次转换。使用 ENABLE 配置为使能自动连续转换;使用 DISABLE 配置为单次转换,转换一次后停止需要手动控制才重新启动转换,具体配置 ADC_CR2:CON 位。
  • ExternalTrigConv:外部触发选择,图 29‑1 中列举了很多外部触发条件,可根据项目需求配置触发来源。实际上,我们一般使用软件自动触发。
  • DataAlign: 转 换 结 果 数 据 对 齐 模 式, 可 选 右 对 齐 ADC_DataAlign_Right 或 者 左 对 齐ADC_DataAlign_Left。一般我们选择右对齐模式。
  • NbrOfChannel: AD 转换通道数目,根据实际设置即可。具体的通道数和通道的转换顺序是配置规则序列或注入序列寄存器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/581635.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习每周挑战——百思买数据

最近由于比赛,断更了好久,从五一开始不会再断更了。这个每周挑战我分析的较为简单,有兴趣的可以将数据集下载下来试着分析一下,又不会的我们可以讨论一下。 这是数据集: import pandas as pd import numpy as np impo…

leetcode_38.外观数列

38. 外观数列 题目描述:给定一个正整数 n ,输出外观数列的第 n 项。 「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列: countAndSay(1…

bugku-ok

打开文件发现有很多ok的字符 转在线地址解码

基于3D机器视觉的注塑缺陷检测解决方案

注塑检测是对注塑生产过程中的产品缺陷进行识别和检测的过程。这些缺陷可能包括色差、料流痕、黑点(包括杂质)等,它们可能是由多种因素引起,如原料未搅拌均匀、烘料时间过长、工业温度局部偏高、模具等问题造成的。不仅影响产品的…

Stable Diffusion教程:文生图

最近几天AI绘画没有什么大动作,正好有时间总结下Stable Diffusion的一些基础知识,今天就给大家再唠叨一下文生图这个功能,会详细说明其中的各个参数。 文生图是Stable Diffusion的核心功能,它的核心能力就是根据提示词生成相应的…

【喜报】科大睿智为武汉博睿英特科技高质量通过CMMI3级评估咨询工作

武汉博睿英特科技有限公司是信息通信技术产品、建筑智慧工程服务提供商。其拥有专注于航空、政府、教育、金融等多行业领域的资深团队,及时掌握最新信息通信应用技术,深刻理解行业业务流程,擅于整合市场优质资源,积极保持与高校产…

redis ZRANGE 使用最详细文档

环境: redis_version:7.2.2 本文参考 redis 官方文档1 语法 ZRANGE key start stop [BYSCORE | BYLEX] [REV] [LIMIT offset count] [WITHSCORES]参数含义key是有序集合的键名start stop在不同语境下,可用值不一样BYSCORE | BYLEX按照分数查询 | 相…

【汇编】#6 80x86指令系统其二(串处理与控制转移与子函数)

文章目录 一、串处理指令1. 与 REP 协作的 MOVS / STOS / LODS的指令1.1 重复前缀指令REP1.2 字符串传送指令(Move String Instruction)1.2 存串指令(Store String Instruction)1.3 取字符串指令(Load String Instruct…

[华为OD]给定一个 N*M 矩阵,请先找出 M 个该矩阵中每列元素的最大值 100

题目: 给定一个 N*M 矩阵,请先找出 M 个该矩阵中每列元素的最大值,然后输出这 M 个值中的 最小值 补充说明: N 和 M 的取值范围均为:[0, 100] 示例 1 输入: [[1,2],[3,4]] 输出: 3 说…

【UE5】数字人基础

这里主要记录一下自己在实现数字人得过程中涉及导XSens惯性动捕,视频动捕,LiveLinkFace表捕,GRoom物理头发等。 一、导入骨骼网格体 骨骼网格体即模型要在模型雕刻阶段就要雕刻好表捕所需的表情体(blendshape),后面表捕的效果直…

机器学习:基于Sklearn框架,使用逻辑回归对由心脏病引发的死亡进行预测分析

前言 系列专栏:机器学习:高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学…

数据分析-----方法论

什么是数据分析方法 数据分析方法:将零散的想法和经验整理成有条理的、系统的思路,从而快速地解决问题。 案例: 用户活跃度下降 想法: APP出现问题?去年也下降了吗?是所有的人群都在下降吗&#xff1f…

vscode中新建vue项目

vscode中新建vue项目 进入项目文件夹,打开终端 输入命令vue create 项目名 如vue create test 选择y 选择vue3 进入项目,运行vue项目 输入命令cd test和npm run serve

Spark RDD

Spark RDD操作 Spark执行流程 在上一讲中,我们知道了什么是Spark,什么是RDD、Spark的核心构成组件,以及Spark案例程序。在这一讲中,我们将继续需要Spark作业的执行过程,以及编程模型RDD的各种花式操作,首…

蓝桥杯ctf2024 部分wp

数据分析 1. packet 密码破解 1. cc 逆向分析 1. 欢乐时光 XXTEA #include<stdio.h> #include<stdint.h> #define DELTA 0x9e3779b9 #define MX (((z>>5^y<<2)(y>>3^z<<4))^((sum^y)(key[(p&3)^e]^z))) void btea(unsigned int* v…

【Python 对接QQ的接口】简单用接口查询【等级/昵称/头像/Q龄/当天在线时长/下一个等级升级需多少天】

文章日期&#xff1a;2024.04.28 使用工具&#xff1a;Python 类型&#xff1a;QQ接口 文章全程已做去敏处理&#xff01;&#xff01;&#xff01; 【需要做的可联系我】 AES解密处理&#xff08;直接解密即可&#xff09;&#xff08;crypto-js.js 标准算法&#xff09;&…

纯血鸿蒙APP实战开发——监听HiLog日志实现测试用例验证

介绍 日常中在进行测试用例验证时&#xff0c;会出现部分场景无法通过判断UI的变化来确认用例是否正常运行&#xff0c;我们可以通过监听日志的方式来巧妙的实现这种场景。本示例通过监听hilog日志的回调&#xff0c;判断指定日志是否打印&#xff0c;来确定测试用例的执行结果…

Linux 第十三章

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;linux &#x1f525;座右铭&#xff1a;“不要等到什么都没有了…

IDEA主题美化【保姆级】

前言 一款好的 IDEA 主题虽然不能提高我们的开发效率&#xff0c;但一个舒适简单的主题可以使开发人员更舒适的开发&#xff0c;时常换一换主题可以带来不一样的体验&#xff0c;程序员的快乐就这么简单。话不多说&#xff0c;先上我自己认为好看的主题设置。 最终效果图: 原…

7.Prism框架之对话框服务

文章目录 一. 目标二. 技能介绍① 什么是Dialog?② Prism中Dialog的实现方式③ Dialog使用案例一 (修改器)④ Dialog使用案例2(异常显示窗口) 一. 目标 1. 什么是Dialog?2. 传统的Dialog如何实现?3. Prism中Dialog实现方式4. 使用Dialog实现一个异常信息弹出框 二. 技能介…