基础环境:wsl2安装Ubuntu22.04 + miniconda

服务器相关信息:

Thinkpad p1 gen5 64G 2T 3080ti,自带的有nvidia-smi显卡驱动。

使用wsl2安装Ubuntu22.04 + miniconda

目标:安装gpu版本的PyTorch2.1.2(torch2.1.2/cu117 + torchvision0.16.2/cu117)
处理器	12th Gen Intel(R) Core(TM) i9-12900H   2.50 GHz
机带 RAM	64.0 GB (63.7 GB 可用)
系统类型	64 位操作系统, 基于 x64 的处理器
显卡: 3080TI
版本	Windows 11 专业版
版本	23H2
安装日期	‎2024/‎4/‎15
操作系统版本	22631.3447
体验	Windows Feature Experience Pack 1000.22688.1000.0

$ nvidia-smi
Fri Apr 19 09:15:30 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   47C    P0             26W /   95W |       0MiB /  16384MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

cuda环境搭建

1、CUDA Toolkit 11.7 Update 1 Downloads
下载地址:https://developer.nvidia.com/cuda-11-7-1-download-archive

在这里插入图片描述

$ wget https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
--2024-04-19 09:19:29--  https://developer.download.nvidia.com/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 152.199.39.144
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run [following]
--2024-04-19 09:19:29--  https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_515.65.01_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 36.153.62.131, 36.153.62.132, 36.153.62.130, ...
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|36.153.62.131|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3524358811 (3.3G) [application/octet-stream]
Saving to: ‘cuda_11.7.1_515.65.01_linux.run’

cuda_11.7.1_515.65.01_linux.run         100%[=============================================================================>]   3.28G  28.4MB/s    in 92s

2024-04-19 09:21:03 (36.6 MB/s) - ‘cuda_11.7.1_515.65.01_linux.run’ saved [3524358811/3524358811]

安装依赖库文件
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo apt-get -y install  libfreeimage3 libfreeimage-dev


~$gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

~$ ls
cuda_11.7.1_515.65.01_linux.run
~$ sudo sh cuda_11.7.1_515.65.01_linux.run
===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-11.7/

Please make sure that
 -   PATH includes /usr/local/cuda-11.7/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.7/lib64, or, add /usr/local/cuda-11.7/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.7/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 515.00 is required for CUDA 11.7 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run --silent --driver

Logfile is /var/log/cuda-installer.log

最后的summary最重要的是这两句:

Please make sure that
 -   PATH includes /usr/local/cuda-11.7/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.7/lib64, or, add /usr/local/cuda-11.7/lib64 to /etc/ld.so.conf and run ldconfig as root

在路径中添加/usr/local/cuda-10.7/bin和/usr/local/cuda-10.7/lib64
在 vim ~/.bashrc末尾添加:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

 source ~/.bashrc
 nvcc -V

安装cudnn

https://developer.nvidia.com/rdp/cudnn-archive

方法一:
sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2004-8.9.7.29/cudnn-local-30472A84-keyring.gpg /usr/share/keyrings/
cd /var/cudnn-local-repo-ubuntu2204-8.9.7.29
sudo dpkg -i libcudnn8_8.9.7.29-1+cuda11.8_amd64.deb
sudo dpkg -i libcudnn8-dev_8.9.7.29-1+cuda11.8_amd64.deb
sudo dpkg -i libcudnn8-samples_8.9.7.29-1+cuda11.8_amd64.deb

 
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd  $HOME/cudnn_samples_v8/mnistCUDNN
make clean && make
./mnistCUDNN
 
方法二(建议使用):
$ tar -xvf cudnn-linux-$arch-8.x.x.x_cudaX.Y-archive.tar.xz
$ sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
$ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

安装nccl

NCCL下载地址:NVIDIA Collective Communications Library (NCCL) | NVIDIA Developer

下载地址:
https://developer.nvidia.com/nccl/nccl-legacy-downloads

  sudo dpkg -i  nccl-local-repo-ubuntu2204-2.14.3-cuda11.7_1.0-1_amd64.deb
  sudo cp /var/nccl-local-repo-ubuntu2204-2.14.3-cuda11.7/nccl-local-F0C3C384-keyring.gpg     /usr/share/keyrings/
  sudo apt install libnccl2 libnccl-dev
  sudo apt update

官方教程地址:https://docs.nvidia.com/deeplearning/nccl/install-guide/#down
3.1. Ubuntu
Installing NCCL on Ubuntu requires you to first add a repository to the APT system containing the NCCL packages, then installing the NCCL packages through APT. There are two repositories available; a local repository and a network repository. Choosing the latter is recommended to easily retrieve upgrades when newer versions are posted.
In the following commands, please replace with your CPU architecture: x86_64, ppc64le, or sbsa, and replace with the Ubuntu version, for example ubuntu1604, ubuntu1804, or ubuntu2004.
Install the repository.
For a local NCCL repository:
sudo dpkg -i nccl-repo-.deb
Note:
The local repository installation will prompt you to install the local key it embeds and with which packages are signed. Make sure to follow the instructions to install the local key, or the install phase will fail later.

For the network repository:
wget https://developer.download.nvidia.com/compute/cuda/repos///cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
Update the APT database:
sudo apt update
Install the libnccl2 package with APT. Additionally, if you need to compile applications with NCCL, you can install the libnccl-dev package as well:
Note: If you are using the network repository, the following command will upgrade CUDA to the latest version.
sudo apt install libnccl2 libnccl-dev
If you prefer to keep an older version of CUDA, specify a specific version, for example:
sudo apt install libnccl2=2.4.8-1+cuda10.0 libnccl-dev=2.4.8-1+cuda10.0
Refer to the download page for exact package versions.




## 安装miniconda

chop@zhangjiapeng:~$ wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_23.11.0-1-Linux-x86_64.sh
–2024-04-19 16:41:15-- https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_23.11.0-1-Linux-x86_64.sh
Resolving mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)… 101.6.15.130, 2402:f000:1:400::2
Connecting to mirrors.tuna.tsinghua.edu.cn (mirrors.tuna.tsinghua.edu.cn)|101.6.15.130|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 131882602 (126M) [application/octet-stream]
Saving to: ‘Miniconda3-py38_23.11.0-1-Linux-x86_64.sh’

Miniconda3-py38_23.11.0-1-Linux-x86_64. 100%[=============================================================================>] 125.77M 378KB/s in 5m 28s

2024-04-19 16:46:43 (393 KB/s) - ‘Miniconda3-py38_23.11.0-1-Linux-x86_64.sh’ saved [131882602/131882602]

chop@zhangjiapeng:~$ bash Miniconda3-py38_23.11.0-1-Linux-x86_64.sh

Welcome to Miniconda3 py38_23.11.0-1

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue

======================================
End User License Agreement - Miniconda

Copyright 2015-2023, Anaconda, Inc.

All rights reserved under the 3-clause BSD License:

This End User License Agreement (the “Agreement”) is a legal agreement between you and Anaconda, Inc. (“Anaconda”) and governs your use of Miniconda.

Subject to the terms of this Agreement, Anaconda hereby grants you a non-exclusive, non-transferable license to:

  • Install and use the Miniconda,
  • Modify and create derivative works of sample source code delivered in Miniconda subject to the Terms of Service for the Repository (as defined hereinafter
    ) available at https://www.anaconda.com/terms-of-service, and
  • Redistribute code files in source (if provided to you by Anaconda as source) and binary forms, with or without modification subject to the requirements se
    t forth below.

Anaconda may, at its option, make available patches, workarounds or other updates to Miniconda. Unless the updates are provided with their separate governing
terms, they are deemed part of Miniconda licensed to you as provided in this Agreement. This Agreement does not entitle you to any support for Miniconda.

Anaconda reserves all rights not expressly granted to you in this Agreement.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
    other materials provided with the distribution.
  • Neither the name of Anaconda nor the names of its contributors may be used to endorse or promote products derived from this software without specific prio
    r written permission.

You acknowledge that, as between you and Anaconda, Anaconda owns all right, title, and interest, including all intellectual property rights, in and to Minicon
da and, with respect to third-party products distributed with or through Miniconda, the applicable third-party licensors own all right, title and interest, in
cluding all intellectual property rights, in and to such products. If you send or transmit any communications or materials to Anaconda suggesting or recommend
ing changes to the software or documentation, including without limitation, new features or functionality relating thereto, or any comments, questions, sugges
tions or the like (“Feedback”), Anaconda is free to use such Feedback. You hereby assign to Anaconda all right, title, and interest in, and Anaconda is free t
o use, without any attribution or compensation to any party, any ideas, know-how, concepts, techniques or other intellectual property rights contained in the
Feedback, for any purpose whatsoever, although Anaconda is not required to use any Feedback.

DISCLAIMER

THIS SOFTWARE IS PROVIDED BY ANACONDA AND ITS CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIE
S OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANACONDA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY W
AY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TO THE MAXIMUM EXTENT PERMITTED BY LAW, ANACONDA AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY
LOST PROFITS, LOSS OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEME
NT OR THE USE OR PERFORMANCE OF MINICONDA, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEG
LIGENCE), PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF LIABILITY. IN NO EVENT WILL THE TOTAL CUMULATIVE LIABILITY OF ANACONDA AND ITS AFFILIATE
S UNDER OR ARISING OUT OF THIS AGREEMENT EXCEED 10.00 U.S. DOLLARS.

Miscellaneous

If you want to terminate this Agreement, you may do so by discontinuing use of Miniconda. Anaconda may, at any time, terminate this Agreement and the license
granted hereunder if you fail to comply with any term of this Agreement. Upon any termination of this Agreement, you agree to promptly discontinue use of the
Miniconda and destroy all copies in your possession or control. Upon any termination of this Agreement all provisions survive except for the licenses granted
to you.

This Agreement is governed by and construed in accordance with the internal laws of the State of Texas without giving effect to any choice or conflict of law
provision or rule that would require or permit the application of the laws of any jurisdiction other than those of the State of Texas. Any legal suit, action,
or proceeding arising out of or related to this Agreement or the licenses granted hereunder by you must be instituted exclusively in the federal courts of th
e United States or the courts of the State of Texas in each case located in Travis County, Texas, and you irrevocably submit to the jurisdiction of such court
s in any such suit, action, or proceeding.

Notice of Third Party Software Licenses

Miniconda provides access to a repository (the “Repository”) which contains software packages or tools licensed on an open source basis from third parties and
binary packages of these third party tools. These third party software packages or tools are provided on an “as is” basis and are subject to their respective
license agreements as well as this Agreement and the Terms of Service for the Repository located at https://www.anaconda.com/terms-of-service; provided, howe
ver, no restriction contained in the Terms of Service shall be construed so as to limit Your ability to download the packages contained in Miniconda provided
you comply with the license for each such package. These licenses may be accessed from within the Miniconda software[1] or https://www.anaconda.com/legal. Inf
ormation regarding which license is applicable is available from within many of the third party software packages and tools and at https://repo.anaconda.com/p
kgs/main/ and https://repo.anaconda.com/pkgs/r/. Anaconda reserves the right, in its sole discretion, to change which third party tools are included in the Re
pository accessible through Miniconda.

Intel Math Kernel Library

Miniconda provides access to re-distributable, run-time, shared-library files from the Intel Math Kernel Library (“MKL binaries”).

Copyright 2018 Intel Corporation. License available at https://software.intel.com/en-us/license/intel-simplified-software-license (the “MKL License”).

You may use and redistribute the MKL binaries, without modification, provided the following conditions are met:

  • Redistributions must reproduce the above copyright notice and the following terms of use in the MKL binaries and in the documentation and/or other materia
    ls provided with the distribution.
  • Neither the name of Intel nor the names of its suppliers may be used to endorse or promote products derived from the MKL binaries without specific prior w
    ritten permission.
  • No reverse engineering, decompilation, or disassembly of the MKL binaries is permitted.

You are specifically authorized to use and redistribute the MKL binaries with your installation of Miniconda subject to the terms set forth in the MKL License
. You are also authorized to redistribute the MKL binaries with Miniconda or in the Anaconda package that contains the MKL binaries. If needed, instructions f
or removing the MKL binaries after installation of Miniconda are available at https://docs.anaconda.com.

cuDNN Software

Miniconda also provides access to cuDNN software binaries (“cuDNN binaries”) from NVIDIA Corporation. You are specifically authorized to use the cuDNN binarie
s with your installation of Miniconda subject to your compliance with the license agreement located at https://docs.nvidia.com/deeplearning/sdk/cudnn-sla/inde
x.html. You are also authorized to redistribute the cuDNN binaries with an Miniconda package that contains the cuDNN binaries. You can add or remove the cuDNN
binaries utilizing the install and uninstall features in Miniconda.

cuDNN binaries contain source code provided by NVIDIA Corporation.

Arm Performance Libraries

Arm Performance Libraries (Free Version): Anaconda provides access to software and related documentation from the Arm Performance Libraries (“Arm PL”) provide
d by Arm Limited. By installing or otherwise accessing the Arm PL, you acknowledge and agree that use and distribution of the Arm PL is subject to your compli
ance with the Arm PL end user license agreement located at: https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-performance-libraries/eu
la.

Export; Cryptography Notice

You must comply with all domestic and international export laws and regulations that apply to the software, which include restrictions on destinations, end us
ers, and end use. Miniconda includes cryptographic software. The country in which you currently reside may have restrictions on the import, possession, use, a
nd/or re-export to another country, of encryption software. BEFORE using any encryption software, please check your country’s laws, regulations and policies c
oncerning the import, possession, or use, and re-export of encryption software, to see if this is permitted. See the Wassenaar Arrangement http://www.wassenaa
r.org/ for more information.

Anaconda has self-classified this software as Export Commodity Control Number (ECCN) EAR99, which includes mass market information security software using or
performing cryptographic functions with asymmetric algorithms. No license is required for export of this software to non-embargoed countries.

The Intel Math Kernel Library contained in Miniconda is classified by Intel as ECCN 5D992.c with no license required for export to non-embargoed countries.

The following packages listed on https://www.anaconda.com/cryptography are included in the Repository accessible through Miniconda that relate to cryptography
.

Last updated March 21, 2022

Do you accept the license terms? [yes|no]

yes

Miniconda3 will now be installed into this location:
/home/chop/miniconda3

  • Press ENTER to confirm the location
  • Press CTRL-C to abort the installation
  • Or specify a different location below

[/home/chop/miniconda3] >>>
PREFIX=/home/chop/miniconda3
Unpacking payload …

Installing base environment…

Downloading and Extracting Packages:

Downloading and Extracting Packages:

Preparing transaction: done
Executing transaction: done
installation finished.
Do you wish to update your shell profile to automatically initialize conda?
This will activate conda on startup and change the command prompt when activated.
If you’d prefer that conda’s base environment not be activated on startup,
run the following command when conda is activated:

conda config --set auto_activate_base false

You can undo this by running conda init --reverse $SHELL? [yes|no]
[no] >>> yes
no change /home/chop/miniconda3/condabin/conda
no change /home/chop/miniconda3/bin/conda
no change /home/chop/miniconda3/bin/conda-env
no change /home/chop/miniconda3/bin/activate
no change /home/chop/miniconda3/bin/deactivate
no change /home/chop/miniconda3/etc/profile.d/conda.sh
no change /home/chop/miniconda3/etc/fish/conf.d/conda.fish
no change /home/chop/miniconda3/shell/condabin/Conda.psm1
no change /home/chop/miniconda3/shell/condabin/conda-hook.ps1
no change /home/chop/miniconda3/lib/python3.8/site-packages/xontrib/conda.xsh
no change /home/chop/miniconda3/etc/profile.d/conda.csh
modified /home/chop/.bashrc

> For changes to take effect, close and re-open your current shell. <

Thank you for installing Miniconda3!




  /home/chop/miniconda3/shell/condabin/Conda.psm1
no change     /home/chop/miniconda3/shell/condabin/conda-hook.ps1
no change     /home/chop/miniconda3/lib/python3.8/site-packages/xontrib/conda.xsh
no change     /home/chop/miniconda3/etc/profile.d/conda.csh
modified      /home/chop/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

Thank you for installing Miniconda3!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/580494.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux-进程状态】

文章目录 1.进程状态1.运行状态2.阻塞状态3.挂起 2.Linux系统中的进程状态1.前台进程和后台进程深度睡眠 2.停止状态3.僵尸状态和死亡状态&#xff08;孤儿进程&#xff09; 1.进程状态 想要理解进程状态&#xff0c;我们要先看看课本中的进程有哪些状态。 进程状态用大白话说…

云渲染一张图多少钱

使用云渲染渲染一张效果图的价格没法确定多少钱一张&#xff0c;云渲染一张图的价格会受到多个因素的影响&#xff0c;如云渲染平台的定价策略、所选的渲染配置、优惠政策以及你提交的场景任务等。因此&#xff0c;无法给出确切的单一价格。 不同的云渲染平台会有不同的定价模…

《苍穹外卖》Day11部分知识点记录(数据统计——图像报表)

一、Apache ECharts 介绍 Apache ECharts是一款基于javascript的数据可视化图标库&#xff0c;提供直观、生动、可交互、可个性化定制的数据可视化图表。 官网地址&#xff1a;https://echarts.apache.org/zh/index.html 效果展示 柱形图饼图折线图 入门案例 1. 在 echart…

API安全尽释领先力,美创再获权威市场指南推荐

数字化时代&#xff0c;单位组织愈加依赖API实现系统间的数据共享和交互&#xff0c;但同时&#xff0c;因API引发的网络攻击风险也在不断升级&#xff0c;成为数据泄露的高发之地。 统计显示&#xff0c;过去的一年&#xff0c;API攻击增长已超过287%。Gartner研报预测&#x…

链动3+1模式:引领运营革命的创新之路与优势解析

在数字化浪潮的席卷之下&#xff0c;企业为寻求持续发展&#xff0c;已将商业模式创新视为核心驱动力。其中&#xff0c;链动31模式以其独特的运营理念&#xff0c;成功引领了一场革命性的运营变革&#xff0c;使得众多企业和个人在激烈的市场竞争中崭露头角。接下来&#xff0…

Docker 容器操作

容器创建 就是将镜像加载到容器的过程。 新创建的容器默认处于停止状态&#xff0c;不运行任何程序&#xff0c;需要在其中发起一个进程来启动容器。 格式&#xff1a;docker create [选项] 镜像 常用选项&#xff1a; -i&#xff1a;让容器开启标准输入 -t&#xff1a;让…

RLDRAM简介

说明 RLDRAM&#xff08;Reduced Latency DRAM&#xff0c;减少延迟动态随机访问存储器&#xff09;是一种专为解决延迟问题而设计的DRAM架构&#xff0c;主要由美光和英飞凌公司开发。它的出现主要是为了满足对更低延迟、更高带宽的SRAM市场的需求。 随着技术的不断发展&…

上位机图像处理和嵌入式模块部署(树莓派4b与mcu固件升级)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 在一个系统当中&#xff0c;可能不止需要树莓派4b一个设备。有的时候还需要搭载一个mcu&#xff0c;做一些运动控制的事情。比如说&#xff0c;图像…

电脑处于局域网,怎么查询电脑公网IP

当你购买了云服务器&#xff0c;要设置安全组的时候&#xff0c;就是限制能访问你的服务器的网络IP&#xff0c;比如限制只有你的电脑能连接你的服务器 那么一般就是要就要开放服务器的22号端口&#xff0c;端口范围就是你要开放的服务器的端口&#xff0c;如上图所示授权对象就…

【JAVA】探究Java依然屹立的25个理由

1.生态系统成熟 Java 具有广泛的生态系统&#xff0c;我们可以自由选择库、构建工具和框架。 2.一次编写&#xff0c;到处运行 Java 具有跨平台特性&#xff0c;一次编写&#xff0c;到处运行。 3. 向后兼容性 Java 承诺永远向后兼容&#xff0c;非常nice。 4. JAVA强类型…

与Apollo共创生态:Apollo7周年大会自动驾驶生态利剑出鞘

前言 4月22日&#xff0c;百度Apollo在北京车展前夕举办了以“破晓•拥抱智变时刻”为主题的智能汽车产品发布会&#xff0c;围绕汽车智能化&#xff0c;发布了智驾、智舱、智图等全新升级的“驾舱图”系列产品。 1、7周年大会 自2013年百度开始布局自动驾驶&#xff0c;201…

盲人安全过马路:科技赋能,独立出行不再难

作为一位资深记者&#xff0c;我长期关注特殊群体的生活现状与科技助力下的改善举措。今天&#xff0c;我要讲述的是盲人朋友在独立出行&#xff0c;尤其是过马路时面临的挑战&#xff0c;以及一款叫做蝙蝠避障的创新辅助应用如何通过实时避障与拍照识别功能&#xff0c;显著提…

vue2[黑马笔记]

vue基础 是什么—javascript框架 构建用户界面的前端框架 1.构建用户界面用vue往html页面中填充数据 2.框架现成的解决方案&#xff0c;遵守框架的规范去实现自己的业务功能学习vue 就是学习vue框架中规定的用法vue的指令组件&#xff08;对ul结构的复用&#xff09;&#x…

袁庭新ES系列16节|Elasticsearch客户端高级操作

前言 上一章节袁老师主要带领大家学习了Elasticsearch客户端基础部分的内容&#xff0c;Elasticsearch客户端还有很多高级相关的操作&#xff0c;这一章节主要带领大家来学习Elasticsearch客户端高级相关的操作。接下来就跟上袁老师的节奏继续探讨Elasticsearch的相关知识。 一…

swiper使用方法?

组件 首先 recat -vant组件 带小点点的 可以实现跳转的一个效果 import { Swiper } from react-vant; 每个 Swiper.Item 代表一张轮播卡片&#xff0c;可以通过 autoplay 属性设置自动轮播的间隔。 import React from react; import { Swiper } from react-vant; import { i…

游戏新手村20:游戏落地页广告页如何设计

在互联网营销中,着陆页(Landing Page,有时被称为首要捕获用户页)就是当潜在用户点击广告或者搜索引擎搜索结果页后显示给用户的网页&#xff0c;LandingPage对于游戏广告的转化率和重要性就不言而喻了。 网页游戏LP页面 上图就是我们大家在浏览网站时不小心蹦出或者主动点击某…

数据结构(八)——排序

八、排序 8.1 排序的基本概念 排序(Sort)&#xff0c;就是重新排列表中的元素&#xff0c;使表少的元素满足按关键字有序的过程。 输入∶n个记录R1,R2...., Rn&#xff0c;对应的关键字为k1, k2,... , kn 输出:输入序列的一个重排R1,R2....,Rn&#xff0c;使得有k1≤k2≤...≤…

快速入门Web开发(下)

你好,我是Qiuner. 为记录自己编程学习过程和帮助别人少走弯路而写博客 这是我的 github gitee 如果本篇文章帮到了你 不妨点个赞吧~ 我会很高兴的 &#x1f604; (^ ~ ^) 想看更多 那就点个关注吧 我会尽力带来有趣的内容 有没出现的图片 请访问 传送门 这是我的掘金账号 掘金文…

【MySQL】查询数据,对结果进行排序(关键字:ORDER BY)

文章目录 单列排序多列排序指定排序方式&#xff0c;升序&#xff08;ASC&#xff0c;ASCENDING&#xff09; / 降序&#xff08;DESC&#xff0c;DESCENDING&#xff09;ORDER BY 关键字与 LIMIT 关键字联用 我是一名立志把细节都说清楚的博主&#xff0c;欢迎【关注】&#x…

Vue项目中引入高德地图步骤详解,附示例代码

vue中如何使用高德地图&#xff0c;下面为您详解。 步骤一&#xff1a;安装高德地图的JavaScript API 在Vue项目的根目录下打开终端&#xff0c;执行以下命令安装高德地图的JavaScript API&#xff1a; npm install amap/amap-jsapi-loader --save 步骤二&#xff1a;创建地…