吴恩达2022机器学习专项课程(一) 7.1 逻辑回归的成本函数第三周课后实验:Lab4逻辑回归的损失函数

问题预览/关键词

  • 上节课回顾
  • 逻辑回归模型使用线性回归模型的平方误差成本函数
  • 单个训练样本的损失
  • 损失函数,成本函数,代价函数的区别
  • 线性回归损失函数和逻辑回归损失函数的区别
  • 逻辑回归模型的成本函数是什么?
  • 逻辑回归模型的损失函数
  • 实验
    • 逻辑回归模型使用平方误差成本函数
    • 可视化y=1和y=0时的损失函数
    • 逻辑回归模型的损失函数新形式
    • 可视化新损失函数的成本函数
  • 总结

上节课回顾

上节课的决策边界是通过w,b构建的,因此需通过成本函数,检测逻辑回归模型中的w,b是否为最优解。所以我们首先要直达逻辑回归模型的成本函数。

逻辑回归模型使用线性回归模型的平方误差成本函数

如右图所示,如果逻辑回归模型使用平方误差代价函数,则代价函数的值会呈现很多局部最小值,使用梯度下降算法会卡主,梯度下降算法无法找到全局最优解。
在这里插入图片描述

单个训练样本的损失

单个训练样本的损失,又叫损失函数,是衡量你在一个训练样本中的表现,也就是某一行训练样本的预测值和真实值的误差的大小。

损失函数,成本函数,代价函数的区别

  • 损失函数是衡量单个训练样本的损失,也就是一个样本的预测值与真实值之间的差异。
  • 成本函数和代价函数是一个意思,代表每个训练样本的损失的总和。

线性回归损失函数和逻辑回归损失函数的区别

  • 线性回归模型的损失函数是计算每组训练样本真实值和预测值的误差平方。
  • 逻辑回归模型的成本函数,是用来衡量每组训练样本的预测概率与真实标签之间的接近程度。在这里插入图片描述

逻辑回归模型的成本函数是什么?

使用对数损失函数计算成本函数,不同训练样本的标签对应不同的损失函数。
在这里插入图片描述

逻辑回归模型的损失函数

  • 当训练样本的真实y=1时,逻辑回归模型的预测f越接近1,代表预测为1的概率越大,损失越小。预测越接近0,代表预测为1的概率小,损失越大。
    在这里插入图片描述
    在这里插入图片描述
  • 当训练样本的真实y=0时,逻辑回归模型的预测f越接近0,代表预测为0的概率越大,损失越小。预测越接近1,代表预测为1的概率越小,损失越大。
    在这里插入图片描述
    在这里插入图片描述

实验

逻辑回归模型使用平方误差成本函数

逻辑回归使用此成本函数,不够平滑,不容易寻找全局最小值。在这里插入图片描述

可视化y=1和y=0时的损失函数

逻辑回归模型预测值f和损失值的走势。
在这里插入图片描述

逻辑回归模型的损失函数新形式

这个形式不用区分y=1和y=0,计算其中一项时,另一项的结果就会为0。(下节课会细说)在这里插入图片描述

可视化新损失函数的成本函数

新的成本函数以及其对数,对数为了让成本函数的轮廓和最小值(或最低点)更容易辨认。由此看出,逻辑回归模型选择此成本函数,没有高原,不连续,局部最小值。适合梯度下降。
在这里插入图片描述

总结

面对分类问题的训练集,需要对数损失函数来衡量每组训练样本的预测值和真实值的差异。差异的具体含义是y=1时,预测y为1的概率的大小。或者y=0时,预测y为0的概率的大小。损失函数是用于衡量单个训练样本,成本函数是衡量整个训练集,也就是累加损失函数的值,然后乘以m/1。如果逻辑回归模型使用平方误差成本函数计算,则成本函数会呈现局部最小值等特点,梯度下降算法可能无法有效地找到全局最优解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/580381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Orange3数据可视化(树查看器-决策树)

树视图 分类和回归树的可视化。 输入 树:决策树 输出 选中的数据:从树节点中选中的实例 数据:带有额外一列,显示每个点是否被选中 这是一个多功能的小部件,用于展示分类和回归树的2D可视化。用户可以选择一个节点…

小毛驴 40km 通勤上班:不一样的工作日!

从到公司上班之后因为距离变远了,也不能像之前一样小毛驴上下班了。 所以通勤方案就变成了: 上班:小毛驴 15min ----- 地铁 40min ----- 公交OR共享单车 12min 步行 5min下班:公交 12min ----- 地铁 40min ----- 小毛驴 15min通…

前端计算机网络之网络模型

什么是网络模型 对于前端开发者而言,理解网络模型的概念是非常重要的。网络模型是描述数据如何在网络中传输和处理的框架和规则,它有助于前端开发者更好地理解和优化应用程序与服务器之间的通信过程。 常用的两类模型 前端开发者需要了解的网络模型主…

2024腾讯游戏安全技术竞赛-机器学习赛道

决赛赛题链接https://gss.tencent.com/competition/2024/doc/2024%E8%85%BE%E8%AE%AF%E6%B8%B8%E6%88%8F%E5%AE%89%E5%85%A8%E6%8A%80%E6%9C%AF%E7%AB%9E%E8%B5%9B-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E5%86%B3%E8%B5%9B.zip 今年的题目是游戏跨语言恶意内容识别 ,题目比较…

Docker 入门篇(一)-- 简介与安装教程(Windows和Linux)

一、Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何Linux机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间没有任何接口(类似iPhon…

计算机服务器中了devicdata勒索病毒怎么办?Devicdata勒索病毒解密工具步骤

在这个网络飞速发展的时代,网络为企业的生产运营起到了关键性作用,利用网络可以开展各项工作业务,大大提高了企业生产效率与业务水平,在大家都为网络的便利感到欣慰时,网络数据安全问题,成为众多企业关心的…

河南各地市统计面板数据集(2010-2022年)

数据简介:《河南统计NJ》是一部全面反映河南省经济和社会发展情况的资料性年刊。河南统计年鉴包括行政区划资料、国民经济综合资料、基本单位资料和航空港区资料。 而本篇面板数据则反映了河南省各个地级市的经济、人口、就业、农业、工业、人民生活等等方面的发展…

【Linux系统编程】基础指令(三)

💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…

堆的介绍,实现(c语言实现)

目录 堆的概念 堆的性质: 堆的分类 父子结点的下标关系 堆的向下调整算法 ​编辑小堆 大堆 建堆 堆的向上调整算法 小堆 大堆 堆的基本操作 定义堆 初始化堆 销毁堆 打印堆 堆的插入 堆的删除 大堆(Max Heap)的向下调整算法…

白酒:香型创新在白酒市场竞争中的优势与策略

在香型创新方面展现出明显的市场竞争优势,香型创新不仅满足了消费者对口味多样化的需求,还为酒厂带来了差异化竞争优势。在白酒市场竞争中,实施进一步的香型创新策略对于提升品牌曝光度和市场份额至关重要。 首先,香型创新能够满足…

三篇多模态大模型进展综述

Modality Bridging 综述 多模态大型语言模型(MLLM)可实现基于图像撰写故事和无 OCR 的数学推理,在传统方法中很少见,这表明了通向通用人工智能的潜在路径。 通常人们会在 pair 数据上进行大规模(相对于 instruction t…

【千帆平台】AppBuilder工作流编排新功能体验之创建自定义组件

欢迎来到《小5讲堂》 这是《千帆平台》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言工作流编排组件 创建组件组件界面组件信息 组件画布操作节点…

探索项目管理系统:解析五大功能,洞悉项目成功的关键

项目管理新手往往喜欢埋头苦干,殊不知优秀的项目经理已经熟练运用项目管理系统,让项目规划条理清晰。项目管理系统具备的功能,好用的项目管理系统都有这5大功能。分别是项目WBS分解、项目图表和报表、工时管理、团队协作、任务流程自动化。 一…

(学习日记)2024.04.28:UCOSIII第五十二节:User文件夹函数概览(uC-LIB文件夹)第二部分

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

【中级软件设计师】上午题12-软件工程(1):软件工程模型、敏捷方法、软件需求、系统设计

上午题12-软件工程(1) 1 软件过程1.1 CMM 能力成熟度模型1.1 CMMI (建议直接看思维导图) 2 软件过程模型2.1 瀑布模型2.2 增量模型2.3 演化模型2.3.1 原型模型2.3.2 螺旋模型 2.5 喷泉模型 3 统一过程(UP)模型4 敏捷方…

YOKOGAWA横河手操器维修hart通讯器YHC5150X-01

横河手操器设置注意事项:内藏指示计显示选择与单位设置 有如下 5 种显示模式及单位设置百分比显示、用户设置显示、用户设置和百分比交替显示、输入压力显示、输入压力和百分比交替显示。即应用在当没有输入时操作要求输出为20mA引压方向设置右/左侧高压&#xff0c…

CAS原理及其API原子类

目录 1.CAS及使用 1.1. CAS概念 1.2.原子类的使用 1.3.CAS使用自旋锁 2.CAS的ABA问题 2.1.问题介绍 2.2.ABA问题解决方式 1.CAS及使用 1.1. CAS概念 (1)CAS,其实是一种操作的简称,全称为:Compare and swap。 …

HNU-数据库系统-甘晴void学习感悟

前言 过程坎坷,终局满意。 感觉是学懂了知识,并且拿到了分数这样的学科。 【先把这个位置占下来,之后有时间再补充】 教材如下: 总领 有点忘记了,可参考当时记录的笔记: 数据库系统-甘晴void学习笔记-…

【三】Spring Cloud Ribbon 实战

Spring Cloud Ribbon 实战 概述 一直在构思写一个spring cloud系列文章,一方面是对自己实践经验进行一次完整的梳理,另一方面也是希望能够给初学者一些借鉴,让初学者少走些弯路,看到本系列博客就能够很好的把微服务系列组件用好。…

使用QTcpSocket

(1)客户端每隔10ms向服务器发送一次数字字符串&#xff0c;从0开始。 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QTcpSocket> #include <QLabel> #include <QTimer> namespace Ui { class MainWindow; }class Mai…