Java高阶私房菜:JVM垃圾回收机制及算法原理探究

目录

垃圾回收机制

什么是垃圾回收机制

JVM的自动垃圾回收机制

垃圾回收机制的关键知识点

初步了解判断方法-引用计数法

GCRoot和可达性分析算法

什么是可达性分析算法

什么是GC Root

对象回收的关键知识点

标记对象可回收就一定会被回收吗?

可达性分析算法为什么可以解决循环引用造成的内存泄漏问题?

​编辑

垃圾回收算法

标记-清除算法原理

标记-复制算法原理

标记-整理-压缩算法原理

几种算法对比


        本文主要讲解了什么是垃圾回收机制,进而了解它的底层架构原理,到核心的几种垃圾回收算法,逐步延申到它的应用场景和启发。

垃圾回收机制

什么是垃圾回收机制

        垃圾回收机制(Garbage Collection, 简称GC) 指自动管理动态分配的内存空间的机制,自动回收不再使用的内存,以避免内存泄漏和内存溢出的问题。

        最早是在1960年代提出的,程序员需要手动管理内存的分配和释放,这往往会导致内存泄漏和内存溢出等问题,同时也增加了程序员的工作量,特别是C++/C语言开发的时候,Java语言是最早实现垃圾回收机制的语言之一,其他编程语言,如C#、Python和Ruby等,也都提供了垃圾回收机制。

JVM的自动垃圾回收机制

        指Java虚拟机在运行Java程序时,自动回收不再使用的对象所占用的内存空间的过程。Java程序中的对象,一旦不再被引用会被标记为垃圾对象,JVM会在适当的时候自动回收这些垃圾对象所占用的内存空间。

其优点在于

  • 减少了开发人员的工作量,不需要手动管理内存;

  • 动态地管理内存,根据应用程序的需要进行分配和回收,提高了内存利用率;

  • 避免内存泄漏和野指针等问题,增加程序的稳定性和可靠;

缺点在于

  • 垃圾回收会占用一定的系统资源,可能会影响程序的性能;

  • 垃圾回收过程中会停止程序的执行,可能会导致程序出现卡顿等问题;

  • 不一定能够完全解决内存泄漏等问题,需要在编写代码时注意内存管理和编码规范;

垃圾回收机制的关键知识点

        垃圾回收机制需要判断哪些对象需要回收?即如何判读判断对象存活。其方法包括了有引用计数法可达性分析算法(JVM采用)。

        如何针对性进行回收?其收集死亡对象方法主要有三种,有标记-清除算法、标记-复制算法和标记-整理算法。每个中算法所针对的场景都不一样,没有最优解,只有最合适。

        了解垃圾回收算法和垃圾收集器的关系?两者没有可比性,是承先启后的关系,垃圾回收算法是垃圾回收的方法论,而垃圾收集器是算法的落地实现

初步了解判断方法-引用计数法

        简而言之就是跟踪每个对象被引用的次数,当引用次数为0时,就可以将该对象回收。在JVM中,每个对象都有一个引用计数器,当对象被引用时,引用计数器+1,当对象被取消引用时,引用计数器-1,当引用计数器为0时,该对象就可以被回收。

        其优点在于实现简单,回收垃圾的效率高。但缺点也显而易见循环引用无法回收。如果两个对象互相引用,它们的引用计数器永远不会为0,因此无法真正被回收,而且引用计数器开销大,每个对象都需要一个引用计数器,如果对象很多,开销就会很大。

什么是循环引用

public class Main {
    public static void main(String[] args) {
        A a = new A();
        B b = new B();
        a.setB(b);
        b.setA(a);
        a = null;
        b = null;
        System.gc();
    }
}

class A {
    private B b;

    public void setB(B b) {
        this.b = b;
    }
}

class B {
    private A a;

    public void setA(A a) {
        this.a = a;
    }
}

        类A和类B相互引用,每个对象都持有对方的引用,形成了一个循环引用的环,当Main方法执行完毕后,a和b对象都置为null。由于它们相互引用,它们的引用计数器都不为0,无法被垃圾回收器回收,导致内存泄漏,但是上面代码却不会发生内存泄漏,因为多数jvm没有采用这个引用计数器方案,而是采用可达性分析算法

GCRoot和可达性分析算法

什么是可达性分析算法

        简而言之就是从一些“GC Roots”对象开始,通过搜索引用链的方式,找到所有可达对象。如果一个对象没有任何引用链与GC Roots相连,那么它就被判定为不可用的,是可以被回收的垃圾对象。

什么是GC Root

        指一些被JVM认为是存活的对象,它们是垃圾回收算法的起点,可以理解为由堆外指向堆内的引用, 本身是没有存储位置,都是字节码加载运行过程中加入 JVM 中的一些普通引用。通俗的例子可以是一个树形结构,树的根节点就是GC Roots,是垃圾回收器的起点,如果一个节点没有任何子节点与根节点相连,那这个节点就被认为是不可达的,可以被回收器回收。

        举个例子,将GC Roots比喻成一座城市,城市中有很多建筑物,这些建筑物就是内存中的对象,GC Roots就像城市的卫生局、消防局等,它们直接或间接地与城市中的建筑物相连,从这些机构出发,通过道路、桥梁等连接,最终能够到达所有的建筑物,如果一个建筑物没有与这些机构相连,那么它就被认为是废弃的,可以被清理掉。

JVM中的GC Roots对象包括以下几种:

        1)虚拟机栈(栈帧中的本地变量表)中引用的对象。

        2)方法区中类静态属性引用的对象。JDK 1.7 开始静态变量的存储从方法区移动到堆中,比如你定义了一个static 的集合对象,那里面添加的对象就是可以被GC Root可达的

        3)方法区中常量引用的对象。字符串常量池从 JDK 1.7 开始由方法区移动到堆中,本地方法栈中JNI(即一般说的Native方法)引用的对象。

小技巧:由于GC Roots采用栈方式存放变量和指针,如果一个指针它保存了堆内存里面的对象,但是自己又不能存放在堆内存里面,那么它就是一个GC Roots。

代码举例

// product 是栈帧中的本地变量,指向了 title = CSDN 这个 Product 对象
// 此时 当product 充当了 GC Root 的作用
// 当product = null; ,那么product 与原来指向product 对象断开了连接
// 所以这个 new Product("CSDN") 对象会被回收

public class GCTest {
    public static void main(String[] args) {
        Product product = new Product("CSDN");
        product = null;
    }
}

对象回收的关键知识点

标记对象可回收就一定会被回收吗?

        不一定会回收,对象的finalize方法给了对象一次最后一次存活的机会。当对象不可达(可回收)并发生 GC 时,会先判断对象是否执行了 finalize 方法,如果未执行则会先执行 finalize 方法。前对象与 GC Roots 关联,执行 finalize 方法之后,GC 会再次判断对象是否可达,如果不可达,则会被回收,如果可达,则不回收!需要注意的是 finalize 方法只会被执行一次,如果第一次执行 finalize 方法,对象变成了可达,则不会回收,但如果对象再次被 GC,则会忽略 finalize 方法,对象会被直接回收掉!

可达性分析算法为什么可以解决循环引用造成的内存泄漏问题?

        当两个或多个对象相互引用时,它们的引用链会形成一个环,但是由于这个环中的对象与GC Roots没有任何引用链相连,所以JVM会将这些对象判定为不可用的,从而回收它们。如下图所示。

垃圾回收算法

标记-清除算法原理

         是一种常见的垃圾回收算法,它的基本思路是分为两个阶段:标记阶段和清除阶段

        在标记阶段,垃圾回收器会从一些GC Roots对象开始,遍历整个对象图,标记所有被引用的对象。被标记的对象会被打上标记,表示这些对象是“活”的对象,需要保留下来,未被标记的对象就是垃圾对象,可以被回收。

        在清除阶段,垃圾回收器会对所有未被标记的对象进行回收。        

        其优点在于可以回收不连续的内存空间。其缺点显而易见,标记和清除两个步骤,都需要垃圾回收器遍历整个对象图,耗费时间较长,并且会产生内存碎片,当频繁进行垃圾回收时,内存碎片会越来越多导致可用内存空间不足,一次次不连续的内存使用,会影响程序的性能和稳定性。

        该算法应用场景应用在实际应用中,标记清除法一般用于不需要频繁进行垃圾回收的场景,比如在Java堆中大对象的分配和回收。其实后续的收集算法大多都是以标记-清除算法为基础,对其缺点进行改进。

标记-复制算法原理

        是一种常见的垃圾回收算法,它的基本思路是将Java堆分为两个区域:一个活动区域和一个空闲区域。在垃圾回收过程中,首先标记所有被引用的对象,然后将所有被标记的对象复制到空闲区域中,最后交换两个区域的角色,完成垃圾回收

        从下图可以看出复制到空闲区域后的内存对象是连续的,以及未使用的内存空间也被重新分配。

为更深入了解该算法,我们详细看看它的实现步骤:

        1)在初始化环境下会将Java堆分为两个区域:一个活动区域一个空闲区域。初始时,所有对象都分配在活动区域中

        2)从GC Roots对象开始,遍历整个对象图,标记所有被引用的对象;

        3)对所有被标记存活的对象进行遍历,将它们复制到空闲区域中,并更新所有指向它们的引用,使它们指向新的地址

        4)对所有未被标记的对象进行回收,将它们所占用的内存空间释放;

        5)交换活动区域和空闲区域的角色,空闲区域变为新的活动区域,原来的活动区域变为空闲区域;

        6)当空闲区域的内存空间不足时,进行一次垃圾回收,重复以上步骤

        这样的方式其优点在于,如果内存中的垃圾对象较多,需要复制的对象就较少,则效率高,清理后,内存碎片少。其缺点也不少,虽然标记复制算法的效率较高,但是预留一半的内存区域用来存放存活的对象,占用额外的内存空间。如果出现存活对象数量比较多的时候,需要复制较多的对象效率低,假如是在老年代区域,99%的对象都是存活的,则性能低,所以老年代不适合这个算法。

        该算法应用场景应用在新生代的垃圾回收,因此需要对新生代的对象进行分代管理,虚拟机多数采用这个算法,对新生代进行内存管理,因为多数这个新生代区域的存活对象数量少。国外有公司统计过多数业务,98%撑不过一次GC,所以不用1:1比例分配新生代的空间

        这么分配的原因在于,当发生GC时, 将Eden和Survivor中存活对象一次性复制到另外一块Survivor空间上, 然后清理掉Eden和已用过的那块Survivor空间,每次新生代中可用内存空间为整个新生代容量的90% (Eden的80% + Survivor的 10%) ,只有一个Survivor空间, 即10%的新生代是会被浪费而已。

标记-整理-压缩算法原理

        从根节点开始对所有可达对象做一次标记,但之后并不简单地清理未标记的对象,而是将所有的存活对象压缩到内存的一端,然后清理边界外的垃圾,避免了碎片的产生,也不需要两块相同的内存空间,因此性价比比较高。

        其优点在于,解决了标记清除算法的碎片化的问题。和对比标记-复制算法来看,该算法不用浪费额外的空间,因为前者算法需要预留一部分空闲区域用于复制。和对比标记-清除算法来看,前者是一种非移动式的回收算法,而该算法是移动式的回收,且解决了内存碎片化的问题。

        其缺点就是效率相比于标记复制算法和标记清除算法低一些,在整理存活对象时,因对象位置的变动,需要调整该虚拟机栈中的引用地址。

         该算法应用场景应用在老年代的内存回收,它在标记-清除算法的基础上做了部分优化。 

几种算法对比

        标记-复制算法适合在存活对象少、垃圾对象多的场景,即新生代空间,朝生夕灭的场景

        标记-整理-压缩算法适合在存活对象多、垃圾对象少的场景,即老年代空间,都是历经多次GC,依旧存活的对象。

        标记-清除算法作为基础算法,其实也适合于在老年代空间,但不同的是在处理后会有碎片化空间,使用标记-整理-压缩算法效果会更佳。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/580225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用R语言进行简单的因子分析

在本文中,将介绍如何使用R语言进行因子分析,并通过一个示例演示整个过程。因子分析是一种多元统计分析方法,用于探索变量之间的潜在结构和关系。R语言提供了丰富的统计工具和包,使因子分析的实现变得简单而高效。 准备工作 首先…

c++中的链表list的模拟实现

拖更了半个月,我终于来填c的坑啦。上次我们说的vetcor不知道小伙伴还记得多少呢?今天我们要讲list的模拟实现。 目录 架构结点list表的结构 构造函数尾插push_back()尾删pop_back()计算个数:size()判断空empty()※迭代器问题普通迭代器迭代器…

数据结构:实验六:图的操作

一、 实验目的 (1)掌握图的邻接矩阵和邻接表存储结构。 (2)熟练图的邻接表的基本运算。 (3)加深图的深度优先遍历算法和广度优先遍历算法的理解 二、 实验要求 有下图所示的带权有向图及其对应的邻…

【Python时序预测系列】麻雀算法(SSA)优化LSTM实现单变量时间序列预测(源码)

这是我的第269篇原创文章。 一、引言 麻雀算法(Sparrow Search Algorithm,SSA)是一种基于麻雀群体行为的算法,它可以用来优化深度学习模型中的参数。在优化LSTM模型时,可以通过麻雀算法来调整LSTM的参数,以…

亚马逊测评的目的是什么?

测评的目的:店铺销量、留评 特别是新品,一个产品销量很低也没什么评价的产品,很难说服真实买家们,因为同类目还有其他的选择,不管是谁都不愿意当小白鼠的,而且打造爆款,提升产品权重这些都离不…

【华为】SVI接口实验配置

【华为】SVI接口实验配置 拓扑实验要求设备核心交换机PCPC1PC2 查看VLAN验证 配置文档 拓扑 实验要求 一台三层交换机,两台PC PC1 和 PC2 静态获取地址,并处于不同VLAN 然后PC的网关是处在三层交换机LSW1身上,不同VLAN就是处在不同网段&…

Jenkins - macOS 上安装

文章目录 关于 JenkinsmacOS 上安装 Jenkins方式一:brew方式二:tomcat Jenkins war 关于 Jenkins 官网上下载Jenkins并将其安装到持续集成服务器 https://jenkins.io/download/ macOS 上安装 Jenkins 现在本 macOS 上测试 https://www.jenkins.io/do…

HarmonyOS 应用开发——入门

首先当然是华为的官方文档了,要认真学习: https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V2/start-overview-0000001478061421-V2 不想花时间看,可以看我下面总结的干货,哈哈 第一个问题:stage架构和fa架构的区…

MySql 导出导入(备份还原)

1,导出备份 要导出MySQL数据库中的数据,使用mysqldump命令。假设要导出名为mydatabase的数据库到名为backup.sql的文件中: mysqldump -u 用户名 -p 数据库名 > backup.sql 参数说明: -u mysql用户名称 -p 执行后会要求输入…

文献阅读:全皮层原位测序揭示了输入依赖区域的身份

文献介绍 「文献题目」 Whole-cortex in situ sequencing reveals input-dependent area identity 「研究团队」 Anthony M. Zador(美国冷泉港实验室) 「发表时间」 2024-04-24 「发表期刊」 Nature 「影响因子」 64.8 「DOI」 10.1038/s41586-024-0…

LeetCode39题: 组合总和(原创)

【题目描述】 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。candidates 中的 同一个 数字可以 无限制重复…

回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测

回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测 目录 回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络…

C++(Qt)软件调试---crashpad捕获崩溃(19)

C(Qt)软件调试—crashpad捕获崩溃(19) 文章目录 C(Qt)软件调试---crashpad捕获崩溃(19)1、概述2、资源地址3、配置环境4、解决报错5、测试代码6、测试结果7、Qt中使用crashpad 更多精彩内容👉个人内容分类汇总 &#x…

mysql 开启远程连接

登录到mysql mysql -uroot -p 打开mysql数据库并查询user表 use mysql; select user, host from user;更改需要远程连接数据库为任何ip 可以连接, 并刷新系统权限相关的表 update user set host% where hostlocalhost and userroot; flush privileges;

测评与广告双管齐下:敦煌网卖家如何结合自养号实现快速出单

敦煌网作为中国领先的B2B跨境电商平台,为卖家提供了广阔的市场和丰富的资源,但为何有些卖家却难以获得订单呢?下面的内容中,帮助卖家快速出单。 一、如何快速出单? 1、优化产品详情页:产品详情页是吸引买家下单的关键页面。卖…

Shell脚本编写-猜测当前系统是哪个发行版

1、编写脚本 该脚本会确定当前系统中可用的包管理器。同时还以已安装的软件包管理器为指导,猜测当前系统是基于哪个 Linux 发行版。 #!/bin/bash #检查当前系统的可用包管理器,以安装的软件包管理器为指导,猜测当前的系统是基于哪个Linux发行…

顺序表常用操作实现算法

查找操作 插入操作 删除操作 小结 参考附录模拟代码&#xff1a; #include <iostream> const int maxn200; //顺序表 typedef struct{//定义静态类型 int num[maxn];// 装数数组 int len;//记录长度 }sqlist; typedef struct{//定义动态类型 int *num;int len; }sqlist…

XYCTF 2024

本博客仅为记录解题的过程&#xff01; MISC game google识图 XYCTF{Papers Please} 熊博士 XYCTF{liu_ye_mei_you_xiao_jj} 疯狂大杂烩&#xff01;九转功成 在远古时期&#xff0c;修仙过程被分为&#xff1a;炼气、筑基、结丹、元婴、化神、炼虚、合体、大乘、渡劫等九…

MOM是什么?

数字化时代&#xff0c;制造企业纷纷引入信息化系统工具来实现数字化转型升级&#xff0c;你可能对OA、CRM、ERP、MES耳熟能详&#xff0c;说起MOM&#xff0c;你了解吗&#xff1f;今天小编跟你一起认识下它。 MOM是什么&#xff1f; MOM&#xff08;制造运营管理&#xff09…

泰迪智能科技受邀参加2024年粤港澳大湾区产教融合技能人才培养联盟理事会会议

4月24日下午&#xff0c;2024年粤港澳大湾区产教融合技能人才培养联盟&#xff08;以下简称联盟&#xff09;理事会会议在白云区成功举办。 会议由广州市人力资源和社会保障局、广州市发展和改革委员会、广州市教育局、广州市工业和信息化局、广州市总工会等单位指导&#xff…