JavaScript算法描述【排序与搜索】六大经典排序|合并两个有序数组|第一个错误的版本

在这里插入图片描述

🐧主页详情:Choice~的个人主页
📢作者简介:🏅物联网领域创作者🏅 and 🏅阿里专家博主🏅 and 🏅华为云享专家🏅
✍️人生格言:最慢的步伐不是跬步,而是徘徊;最快的脚步不是冲刺,而是坚持。
🧑‍💻人生目标:成为一名合格的程序员,做未完成的梦:实现财富自由。
🚩技术方向:NULL
🀄如果觉得博主的文章还不错的话,请三连支持一下博主哦

🏫系列专栏(免费):
1️⃣ C语言进阶
2️⃣ 数据结构与算法(C语言版)
3️⃣ Linux宝典
4️⃣ C++从入门到精通
5️⃣ C++从入门到实战
6️⃣ JavaScript从入门到精通
7️⃣101算法JavaScript描述
8️⃣微信小程序零基础开发
9️⃣牛客网刷题笔记
🔟计算机行业知识(补充)

文章目录

  • 排序与搜索
    • 算法复杂度
    • 冒泡排序(Bubble Sort)
      • 实现原理
      • 代码
    • 选择排序(Selection Sort)
    • 插入排序(Insertion Sort)
      • 希尔排序(Shell Sort)
      • 快速排序(Quick Sort)
      • 归并排序(Merge Sort)
  • 合并两个有序数组、第一个错误的版本
    • 合并两个有序数组
      • 方法一 双指针 从前往后遍历
      • 详解
      • 方法二 双指针 从后往前遍历
      • 方法三 利用 array.sort()方法
    • 第一个错误的版本
      • 方法一 暴力法[超出时间限制]
      • 方法二 二分法

排序与搜索

排序算法(sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。

排序算法的一个指标是稳定性,稳定性即:如果只按照第一个数字排序的话,第一个数字相同而第二个数字不同的,第二个数字按照原有排序的就是稳定排序,不按照原有排序的就是不稳定排序。

算法复杂度

排序方法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性
冒泡排序O(n^2)O(n2)O(n^2)O(n2)O(n)O(n)O(1)O(1)稳定
选择排序O(n^2)O(n2)O(n^2)O(n2)O(n^2)O(n2)O(1)O(1)不稳定
插入排序O(n^2)O(n2)O(n^2)O(n2)O(n)O(n)O(1)O(1)稳定
希尔排序O(n^{1.3})O(n1.3)O(n^2)O(n2)O(n)O(n)O(1)O(1)不稳定
快速排序O(nlog_2{n})O(nlog2n)O(n^2)O(n2)O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)不稳定
归并排序O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)O(n)O(n)稳定

冒泡排序(Bubble Sort)

我们先来了解一下冒泡排序算法,虽然比较容易实现,但是比较慢。之所以称之为冒泡排序是因为使用这种排序算法时,像气泡一样从数组的一端冒到另一端。

实现原理

  • 每次比较,相邻的元素,如果第一个比第二个大,就交换两个元素的位置
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

image-20220820172943250

[^重复 1 - 5]:

代码

function bubbleSort(arr) {
  const len = arr.length;
  for (let i = 0; i < len - 1; i++) {
    for (let j = 0; j < len - 1 - i; j++) {
      if (arr[j] > arr[j+1]) {
        const temp = arr[j+1];
        arr[j+1] = arr[j];
        arr[j] = temp;
      }
    }
  }
  return arr;
}

选择排序(Selection Sort)

选择排序是一种简单直观的排序算法。选择排序从数组的开头开始,将第一个元素和其他元素进行比较,检查完所有元素后最小的元素会被放到数组的第一个位置,然后从第二个元素开始继续。这个过程一直进行到数组的倒数第二个位置。

image-20220820172949645

function selectionSort(arr) {
  const len = arr.length;
  let minIndex;
  let temp;
  for (let i = 0; i < len - 1; i++) {
      minIndex = i;
      for (let j = i + 1; j < len; j++) {
        if (arr[j] < arr[minIndex]) { 
          minIndex = j; // 保存最小数的索引
        }
      }
      temp = arr[i];
      arr[i] = arr[minIndex];
      arr[minIndex] = temp;
  }
  return arr;
}

插入排序(Insertion Sort)

插入排序类似于按首字母或者数字对数据进行排序。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

image-20220820172955503

function insertionSort(arr) {
  const len = arr.length;
  let preIndex;
  let current;
  for (let i = 1; i < len; i++) {
    preIndex = i - 1;
    current = arr[i];
    // 大于新元素,将该元素移到下一位置
    while (preIndex >= 0 && arr[preIndex] > current) {
      arr[preIndex + 1] = arr[preIndex];
      preIndex--;
    }
    arr[preIndex + 1] = current;
  }
  return arr;
}

希尔排序(Shell Sort)

希尔排序之所以叫希尔排序,因为它就希老爷子(Donald Shell)创造的。希尔排序对插入做了很大的改善。核心理念与插入排序的不同之处在于,它会优先比较距离较远的元素,而不是相邻的元素。当开始用这个算法遍历数据集时,所有元素之间的距离会不断减少,直到处理到数据的末尾。

image-20220820173010467

function shellSort(arr) {
  const len = arr.length;
  let gap = Math.floor(len / 2);

  while (gap > 0) {
    for (let i = gap; i < len; i++) {
      const temp = arr[i];

      let j = i;
      while (j >= gap && arr[j - gap] > temp) {
        arr[j] = arr[j - gap];
        j -= gap;
      }
      arr[j] = temp;
    }
    gap = Math.floor(gap / 2);
  }
  return arr;
}

快速排序(Quick Sort)

快速排序一般用来处理大数据集,速度比较快。快速排序通过递归的方式,将数据依次分为包含较小元素和较大元素的不同子序列。

实现原理

这个算法首先要在列表中选择一个元素作为基准值,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面。这个基准值一般有 4 种取法:

  • 无脑拿第一个元素
  • 无脑拿最后一个元素
  • 无脑拿中间的元素
  • 随便拿一个

下面的解法基于取最后一个元素实现:

image-20220820173016649

function partition(arr, low, high) {
  let i = low - 1; // 较小元素的索引
  const pivot = arr[high];

  for (let j = low; j < high; j++) {
    // 当前的值比 pivot 小
    if (arr[j] < pivot) {
      i++;
      [arr[i], arr[j]] = [arr[j], arr[i]] 
    }
  }
  [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]
  return i + 1;
}

function quickSort(arr, low, high) {
  if (low < high) {
    const pi = partition(arr, low, high) 
    quickSort(arr, low, pi - 1) 
    quickSort(arr, pi + 1, high) 
  }
  return arr;
}

归并排序(Merge Sort)

归并排序是把一系列排好序的子序列合并成一个大的完整有序序列。

实现原理

把长度为 n 的输入序列分成两个长度为 n / 2 的子序列,载 对这两个子序列分别采用归并排序,最后将两个排序好的子序列合并成一个最终的排序序列。

image-20220820173020600

代码

function mergeSort(arr) {
  const len = arr.length;
  if (arr.length > 1) {
    const mid = Math.floor(len / 2); // 对半分
    const L = arr.slice(0, mid);
    const R = arr.slice(mid, len);

    let i = 0;
    let j = 0;
    let k = 0;

    mergeSort(L); // 对左边的进行排序
    mergeSort(R); // 对右边的进行排序

    while (i < L.length && j < R.length) {
      if (L[i] < R[j]) {
        arr[k] = L[i];
        i++;
      } else {
        arr[k] = R[j];
        j++
      }
      k++;
    }

    // 检查是否有剩余项
    while (i < L.length) {
      arr[k] = L[i];
      i++;
      k++;
    }

    while (j < R.length) {
      arr[k] = R[j];
      j++;
      k++;
    }
  }
  return arr;
}

本章节将分为 3 个部分:

  • Part 1
    • 合并两个有序数组 🌟
    • 第一个错误的版本 🌟
    • 搜索旋转排序数组 🌟🌟
  • Part 2
    • 在排序数组中查找元素的第一个和最后一个位置 🌟🌟
    • 数组中的第K个最大元素 🌟🌟
    • 颜色分类 🌟🌟
  • Part 3
    • 前K个高频元素 🌟🌟
    • 寻找峰值 🌟🌟
    • 合并区间 🌟🌟
  • Part 4
    • 搜索二维矩阵 || 🌟🌟
    • 计算右侧小于当前元素的个数 🌟🌟

合并两个有序数组、第一个错误的版本

合并两个有序数组

给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组。

说明:

初始化 nums1 和 nums2 的元素数量分别为 m 和 n。 你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

示例

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

输出: [1,2,2,3,5,6]

方法一 双指针 从前往后遍历

思路

先简化问题,从合并数组简化成合并两个元素。分别从两个数组中取出一个元素进行比较,比较完后将较小元素合并进结果数组,较大元素继续和另一个数组中取的下一个元素比较,如此循环,直到某个数组中的元素都被比较过时,剩下的数组中未被比较过的元素直接按顺序放到结果数组中。

详解

  1. 定义两个指针 j、k,分别指向当前 nums1 与 nums2 数组中第一个元素的下标,定义一个 result 数组存放合并结果
  2. 比较 nums1[j] 和 nums2[k] 两个元素,将较小元素 push 进 result 中
    1. 指向较小元素的指针加 1,取出上次较大元素继续比较,循环第 2 步
    2. 当某个数组中的元素都被比较过了,将另一数组剩余元素直接 push 到 result 中,因为两个数组都是有序数组,剩下的肯定是较大值

代码

/**
 * @param {number[]} nums1
 * @param {number} m
 * @param {number[]} nums2
 * @param {number} n
 * @return {void}
 */
const merge = function (nums1, m, nums2, n) {
  // 暂存 merge 结果
  const result = [];
  // 定义两个指针 j、k,分别指向当前 nums1 与 nums2 数组中正在比较值的数组下标,从前往后
  let j = 0; let k = 0;
  // 遍历 nums1 和 nums2 数组,遍历完一个数组后跳出循环
  while (j < m && k < n) {
    // 比较 nums1 中取的值与 nums2 中取的值,将较小值 push 到结果数组中
    // 并将下标往后加一,下次循环取后一个值进行比较
    if (nums1[j] > nums2[k]) {
      result.push(nums2[k]);
      k++;
    } else {
      result.push(nums1[j]);
      j++;
    }
  }

  // nums1 或 nums2 中有一个数组未遍历完全
  if (result.length < m + n) {
    // 如果 nums1 遍历完了,则说明 nums2 未遍历完全,
    // 将 nums2 中剩余未比较的数据直接 push 到 merge 结果数组中
    // 反之亦然
    if (j === m) {
      result.push(...nums2.slice(k, n));
    } else {
      result.push(...nums1.slice(j, m));
    }
  }
  // 清空 nums1,将 merge 结果 push 到 nums1 中
  nums1.splice(0, nums1.length);
  nums1.push(...result);
};

复杂度分析

  • 时间复杂度: O(m + n)O(m+n)

    最多遍历 m + n -1m+n−1 次,所以时间复杂度为 O(m + n)O(m+n)

  • 空间复杂度:O(m)O(m)

    开辟新的空间存放 nums1 数组,所以空间复杂度为 O(m)O(m)

方法二 双指针 从后往前遍历

思路

先简化问题,从合并数组简化成合并两个元素。因为 nums1 数组长度可以存放最后排序好的元素,所以可以从后往前取两个数组的元素进行比较,从 nums1 数组的最后开始存放较大元素。较小值继续与新取出的元素进行比较,如此循环直到某个数组中的元素全部被比较过,可得最终结果。

详解

1.定义一个指针 p,指向 nums1 数组最后一个位置(m + n - 1)。 2.比较 nums1[m - 1] 和 nums2[n - 1] 两个元素,将较大元素放到 nums1[p] 中 3.指针 p 往前移动一位,,较大元素所在数组往前继续取出一个元素与上次较小元素进行比较,将较大元素放到 nums1[p] 中 4.循环第 3 步,直到某个数组中的元素全部被比较过,因为 nums1 和 nums2 数组都是有序数组,所以另一数组未比较的元素肯定是较小的那部分元素,直接将剩余元素放到 nums1 的头部

代码

/**
 * @param {number[]} nums1
 * @param {number} m
 * @param {number[]} nums2
 * @param {number} n
 * @return {void}
 */
const merge = function (nums1, m, nums2, n) {
  let currentInsertIndex = nums1.length - 1;
  while (currentInsertIndex >= 0 && n > 0 && m > 0) {
    if (nums1[m - 1] > nums2[n - 1]) {
      nums1[currentInsertIndex--] = nums1[m - 1];
      m--;
    } else {
      nums1[currentInsertIndex--] = nums2[n - 1];
      n--;
    }
  }

  // nums2 未遍历完成,将 nums2 中剩余未遍历的数据插入到 nums1 头部
  // nums1 未遍历完成不用关心,已排序好了
  if (n > 0) {
    nums1.splice(0, n, ...nums2.slice(0, n));
  }
};

复杂度分析

  • 时间复杂度:O(m + n)O(m+n)

    最多遍历 m + n - 1m+n−1 次,所以时间复杂度为 O(m + n)O(m+n)

  • 空间复杂度: O(1)O(1)

    不需要开辟新的空间,所以空间复杂度为 O(1)O(1)

方法三 利用 array.sort()方法

思路

直接合并两个数组并排序

详解

1.将 nums1 后面的占位删除并将 nums2 合并 2.用 array.sort() 方法排序

代码

/**
 * @param {number[]} nums1
 * @param {number} m
 * @param {number[]} nums2
 * @param {number} n
 * @return {void}
 */
const merge = function (nums1, m, nums2, n) {
  // 两数组合并,将 nums1 后面的占位删除并放入 nums2
  nums1.splice(m, n, ...nums2);
  // 排序
  nums1.sort((a, b) => a - b);
};

复杂度分析

  • 时间复杂度:O(nlogn)O(nlogn)

    排序在 v8 引擎下的平均时间复杂度为 O(nlogn)O(nlogn)

  • 空间复杂度:O(nlogn)O(nlogn)

    排序在 v8 引擎下的平均空间复杂度为 O(nlogn)O(nlogn)

第一个错误的版本

你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。 假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。 你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。

示例

给定 n = 5,并且 version = 4 是第一个错误的版本。

调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true

所以,4 是第一个错误的版本。

方法一 暴力法[超出时间限制]

思路

直接for循环找第一个错误版本。

代码

const solution = function(isBadVersion) {
  return function firstBadVersion (n) {
    for (let i = 1; i < n; i++) {
      if (isBadVersion(i)) {
        return i;
      }
    }
    return n;
  }
};

复杂度分析

  • 时间复杂度:O(n)O(n)

    该方法需要遍历每一个元素,需要耗费O(n)O(n)时间,当遇见版本特别多的时候O(n)的时间,因此改方法时间复杂度为O(n)O(n)。

  • 空间复杂度:O(1)O(1)

    该方法没有申请额外的空间,所以空间复杂度为O(1)O(1)

方法二 二分法

思路

前一种方法需要遍历每一个元素,这样如果元素特别多的时候会耗时过多,这个时候通过二分法也就是折半法(有序数组中查找特定元素的搜索算法)来查找元素。

二分法思路:

  1. 首先,从数组的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。

  2. 如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。

  3. 如果某一步数组为空,则表示找不到目标元素。

    这样可以避免无差别遍历降低遍历耗时。

详解

  1. 确定数组左边边界值和右边边界值,找到边界值的中间值
  2. 比较中间值是否是错误版本,如果是则右边边界值=中间值-1,再找中间值比较。如果不是错误版本则左侧边界值=中间值+1,再找左侧值和右侧值之间的中间值比较,这样重复下去
  3. 当左侧边界值>右侧边界值得时候,说明右侧已经全是错误版本了,当前左侧的值就是临界值

代码

const solution = function(isBadVersion) {
  return function firstBadVersion (n) {
    let left = 1;
    let right = n;
    while (left <= right) {
      const mid = Math.floor(left + (right - left) / 2);
      if (isBadVersion(mid)) {
        right = mid - 1;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}

复杂度分析

  • 时间复杂度为: O(\log_2(n))O(log2(n))

    对于n个元素的情况(去掉常数)

    第一次二分:n/2n/2

    第二次二分:n/2^2= n/4n/22=n/4、…

    m次二分:n/(2^m)n/(2m)

    在最坏情况下是在排除到只剩下最后一个值之后得到结果,所以为n/(2^m)n/(2m)=1,得到 2^m=n2m=n

    所以时间复杂度为:O(\log_2(n))O(log2(n))

  • 空间复杂度:O(1)O(1) 该方法没有申请额外的空间,所以空间复杂度为O(1)O(1)

  • 如果对大家有帮助,请三连支持一下!

  • 有问题欢迎评论区留言,及时帮大家解决!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/579408.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++ 笔试练习笔记【1】:字符串中找出连续最长的数字串 OR59

文章目录 OR59 字符串中找出连续最长的数字串题目思路分析实现代码 注&#xff1a;本次练习题目出自牛客网 OR59 字符串中找出连续最长的数字串 题目思路分析 首先想到的是用双指针模拟&#xff0c;进行检索比较输出 以示例1为例&#xff1a; 1.首先i遍历str直到遍历到数字&a…

unity 专项一 localPosition与anchoredPosition(3D)的区别

一 、RectTransform 概念 1、RectTransform继承自Transform&#xff0c;用于描述矩形的坐标(Position)&#xff0c;尺寸(Size)&#xff0c;锚点(anchor)和中心点(pivot)等信息&#xff0c;每个2D布局下的元素都会自动生成该组件。 2、当我们在处理UI组件时&#xff0c;往往容易…

【微信小程序调用百度API实现图像识别实战】-前后端加强版

前言&#xff1a;基于前面两篇图像识别项目实战文章进行了改造升级。 第一篇 入门【微信小程序调用百度API实现图像识别功能】----项目实战 第二篇 前后端结合 【微信小程序调用百度API实现图像识别实战】----前后端分离 这一篇主要讲述的是在第二篇的基础上新增意见反馈功能&a…

ZooKeeper 搭建详细步骤之一(单机模式)

搭建模式简述 ZooKeeper 的搭建模式包括单机模式、集群模式和伪集群模式&#xff0c;分别适用于不同的场景和需求&#xff0c;从简单的单节点测试环境到复杂的多节点高可用生产环境。在实际部署时&#xff0c;应根据系统的可用性要求、数据量、并发负载等因素选择合适的部署模式…

mysql UNION 联合查询

mysql UNION 联合查询 业务需要拉数据&#xff0c;这里需要对查询不同格式的数据进行组装&#xff0c;此处采用联合查询 注意1&#xff1a;null as 设备关爱 &#xff0c;结果为null&#xff0c;表头为设备关爱 注意2&#xff1a; UNION 或者 UNION ALL 联合查询自行选用 注意3…

新开的拼多多店铺怎么运营

今天给大家分享一下如何在拼多多平台上开设并运营一家店铺。不管你是创业者还是小型商家&#xff0c;相信这个话题都会对你有所帮助。 拼多多新店需要做些推广提高店铺权重 新店用3an推客做推广比较好 3an推客是给商家提供的营销工具&#xff0c;3an推客CPS推广模式由商家自主…

Int4:Lucene 中的更多标量量化

作者&#xff1a;来自 Elastic Benjamin Trent, Thomas Veasey 在 Lucene 中引入 Int4 量化 在之前的博客中&#xff0c;我们全面介绍了 Lucene 中标量量化的实现。 我们还探索了两种具体的量化优化。 现在我们遇到了一个问题&#xff1a;int4 量化在 Lucene 中是如何工作的以…

(七)Servlet教程——Idea编辑器集成Tomcat

1. 点击桌面上Idea快捷方式打开Idea编辑器&#xff0c;假如没有创建项目的话打开Idea编辑器后的界面展示如下图所示 2. 点击界面左侧菜单中的自定义 3. 然后点击界面中的“所有设置...”,然后点击“构建、执行、部署”&#xff0c;选择其中的“应用程序服务器” 4. 点击“”按钮…

每日OJ题_DFS回溯剪枝⑦_力扣77. 组合

目录 力扣77. 组合 解析代码 力扣77. 组合 77. 组合 难度 中等 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;n 4, k 2 输出&#xff1a; [[2,4],[3,4],[2,3],[1,…

数据结构与算法(Java版) | 详解十大经典排序算法之一:插入排序

接下来&#xff0c;我来给大家讲解第三种排序算法&#xff0c;即插入排序。 基本介绍 首先&#xff0c;我们来看下插入排序的基本介绍。 插入排序&#xff0c;其属内部排序法&#xff0c;是对于欲排序的元素以插入的方式来找寻该元素的适当位置&#xff0c;以便最终达到排序…

基于Springboot的考研资讯平台

基于SpringbootVue的考研资讯平台的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页 考研资讯 报考指南 资料信息 论坛信息 后台登录 考研资讯管理 学生管理 资…

Python数据分析实验二:Python数据预处理

目录 一、实验目的与要求二、实验任务三、主要程序清单和运行结果&#xff08;一&#xff09;对chipotle.csv文件的销售数据进行分析&#xff08;二&#xff09;对描述泰坦尼克号成员的信息进行可视化和相关分析 四、实验体会 一、实验目的与要求 1、目的&#xff1a;   掌握…

分布式与一致性协议之Paxos算法(二)

Paxos算法 如何达成共识 想象这样一个场景&#xff0c;某地出现突发事件&#xff0c;当地村委会、负责人等在积极研究和搜集解决该事件的解决方案&#xff0c;你也决定参与其中&#xff0c;提交提案&#xff0c;建议一些解决方法。为了和其他村民的提案做区分&#xff0c;你的…

eclipse 如何创建python文件

一、准备 1.平台要求&#xff1a; 电脑除了要安装eclipse软件和Python语言包之外&#xff0c;还需要将Python集成到eclipse软件中&#xff0c;网上有很多的方法&#xff0c;这里就不细细介绍如何集成了。 在下面界面中可以看到自己已经安装了继承插件。具体方法见步骤2&…

构建数字化银行:现代化总架构探究

随着科技的迅速发展和用户需求的不断变化&#xff0c;传统银行业正迎来一场数字化转型的浪潮。在这个数字化时代&#xff0c;银行需要构建现代化的总架构&#xff0c;以适应快速变化的市场环境和客户需求。本文将深入探讨数字化银行的总架构设计理念、关键技术以及实践经验&…

PotatoPie 4.0 实验教程(29) —— FPGA实现摄像头图像均值滤波处理

图像的均值滤波简介 图像均值滤波处理是一种常见的图像处理技术&#xff0c;用于降低图像中噪声的影响并平滑图像。该方法通过在图像中滑动一个固定大小的窗口&#xff08;通常是一个正方形或矩形&#xff09;&#xff0c;将窗口中所有像素的值取平均来计算窗口中心像素的新值…

26.统一网关Gateway

网关的功能 1.身份认证&#xff0c;权限的校验。 2.服务的路由&#xff0c;负载均衡。用户请求被分配到哪一个微服务。一个微服务可以有多个实例&#xff0c;所以使用负载均衡。 3.请求限流。 springcloud网关实现有两种&#xff1a;gateway, zuul zuul是基于servlet实现的…

Vitis HLS 学习笔记--IDE软件高效操作指引

目录 1. 简介 2. 实用软件操作 2.1 C/RTL Cosimulation 选项 2.2 Do not show this dialog again 2.3 New Solution 2.4 对比 Solution 2.5 以命令行方式运行&#xff08;windows&#xff09; 2.6 文本缩放快捷键 2.7 查看和修改快捷键 2.8 将Vitis HLS RTL 导入 Viv…

YouTubeDNN模型

Deep Neural Networks for YouTube Recommendations YouTubeDNN模型是2016年的一篇文章&#xff0c;这篇文章给出了很多优化推荐系统中的工程性经验和trick&#xff0c;比如召回方面的"example age", “负采样”&#xff0c;“非对称消费&#xff0c;防止泄露”&…

MySQL/MariaDB 如何查看当前的用户

MySQL 的所有数据库用户信息是存储在 user 数据表中的。 可以在登录成功数据后运行 SQL&#xff1a; MariaDB [(none)]> select user,host from user;就可以查看到数据中的所有用户信息。 MariaDB [(none)]> select user,host from user; ERROR 1046 (3D000): No databa…