【机器学习-18】特征筛选:提升模型性能的关键步骤

一、引言

  在机器学习领域,特征筛选是一个至关重要的预处理步骤。随着数据集的日益庞大和复杂,特征的数量往往也随之激增。然而,并非所有的特征都对模型的性能提升有所贡献,有些特征甚至可能是冗余的、噪声较大的或者与目标变量无关的。因此,进行特征筛选是机器学习工作流程中不可或缺的一环。

1、特征筛选在机器学习中的重要性

  特征筛选的重要性主要体现在以下几个方面:

  首先,特征筛选有助于减少模型的复杂度。当特征数量过多时,模型需要学习的参数也会相应增加,这可能导致模型过于复杂,容易出现过拟合现象。通过筛选掉那些不重要的特征,可以简化模型结构,降低过拟合的风险。

  其次,特征筛选可以提高模型的性能。通过选择与目标变量相关性较高的特征,模型可以更加专注于学习那些真正对预测结果有影响的因素,从而提高预测准确率。此外,减少特征数量还可以加快模型的训练速度,降低计算成本。

  最后,特征筛选有助于提升模型的解释性。在某些应用场景下,我们不仅需要模型能够做出准确的预测,还需要能够理解模型是如何做出决策的。通过筛选掉那些不重要的特征,我们可以使模型更加简洁明了,便于理解和解释。

2、特征筛选的目标

  特征筛选的主要目标包括减少过拟合、提高模型性能以及加速训练过程。

  减少过拟合是特征筛选的一个重要目标。过拟合是指模型在训练集上表现良好,但在测试集或新数据上表现较差的现象。这通常是因为模型过于复杂,学习了一些训练数据中的噪声或异常值。通过特征筛选,我们可以去除那些与噪声或异常值高度相关的特征,从而降低过拟合的风险。

  提高模型性能是特征筛选的另一个核心目标。通过选择与目标变量相关性较高的特征,我们可以使模型更加专注于学习那些真正对预测结果有影响的因素。这样不仅可以提高预测准确率,还可以使模型更加稳健和可靠。

  加速训练过程也是特征筛选的一个重要目标。当特征数量过多时,模型的训练时间可能会显著增加。通过筛选掉那些不重要的特征,我们可以减少模型的复杂度,从而降低训练时间,提高计算效率。

3、博客内容概览

  在接下来的博客内容中,我们将深入探讨特征筛选的基本概念、方法以及实践步骤。我们将介绍不同类型的特征筛选方法,包括基于统计的方法、基于模型的方法和嵌入式方法等,并详细解释每种方法的原理和适用场景。此外,我们还将分享一些在实际项目中应用特征筛选的经验和案例,帮助读者更好地理解如何在实际问题中应用特征筛选技术。最后,我们将总结特征筛选在机器学习中的关键作用,并展望未来特征筛选技术的发展方向。

  通过本博客的学习,读者将能够掌握特征筛选的基本知识和实践技能,为提升机器学习模型的性能奠定坚实的基础。

二、特征筛选的基本概念

  在机器学习的流程中,特征筛选是一个核心步骤,它帮助我们识别并保留与目标变量最相关的特征,同时剔除那些对模型性能贡献不大或者没有贡献的特征。下面我们将深入探讨特征筛选的定义、它与特征工程的关系以及不同类型的特征筛选方法。

1、特征筛选的定义

  特征筛选,顾名思义,是指从原始特征集中选择出对于模型训练和目标预测最为重要的特征子集的过程。通过特征筛选,我们可以减少数据集的维度,降低模型的复杂度,提高模型的泛化能力,并加速模型的训练过程。特征筛选的核心在于评估每个特征与目标变量之间的相关性或重要性,并基于这些评估结果来选择特征。

2、特征筛选与特征工程的关系

  特征筛选是特征工程的一个重要组成部分。特征工程是一个更广泛的概念,它涵盖了从原始数据中提取和构造有意义的特征,以及对这些特征进行转换和筛选的整个过程。特征筛选则是特征工程中的一个关键步骤,它专注于从已有的特征集中选择出最有价值的特征。

  特征工程和特征筛选是相辅相成的。特征工程通过构造新的特征或转换现有特征来丰富特征集,为模型提供更多的信息。而特征筛选则在这些特征中挑选出最重要的特征,以简化模型并提高性能。因此,在进行机器学习建模时,我们通常需要先进行特征工程,再进行特征筛选,以充分利用数据的潜力并提升模型的性能。

3、特征筛选的几种类型

  特征筛选可以根据其筛选方式的不同分为过滤式、包裹式和嵌入式三种类型。

  过滤式特征筛选:这种方法主要依赖于统计测试或其他评估指标来度量特征与目标变量之间的相关性或重要性。它独立于任何机器学习算法,仅根据特征自身的性质进行筛选。常见的过滤式特征筛选方法包括方差阈值法(移除方差较小的特征)、相关性分析(计算特征与目标变量之间的相关系数)以及互信息法等。过滤式特征筛选的优点是计算效率高,可以快速剔除大量无关特征;缺点是可能忽略特征之间的交互作用,导致一些重要特征被误删。

  包裹式特征筛选:这种方法将特征选择过程与模型训练过程相结合,通过评估不同特征子集对模型性能的影响来选择特征。常见的包裹式特征筛选方法包括递归特征消除(通过递归地考虑越来越小的特征集来选择特征)和基于模型的特征重要性评估(如使用随机森林或梯度提升机等模型来评估特征的重要性)。包裹式特征筛选的优点是能够考虑特征之间的交互作用,选择出对模型性能贡献最大的特征;缺点是计算成本较高,尤其是在特征数量较多时。

  嵌入式特征筛选:这种方法在模型训练过程中自动进行特征选择。一些机器学习算法(如决策树、随机森林和深度学习模型等)具有内置的特征重要性评估机制,可以在训练过程中自动评估每个特征的重要性。嵌入式特征筛选的优点是计算效率高且能够考虑特征之间的交互作用;缺点是需要依赖于特定的机器学习算法,并且不同算法可能给出不同的特征重要性评估结果。

  在选择特征筛选方法时,我们需要根据具体的应用场景、数据集特点和计算资源等因素进行综合考虑。不同的方法各有优缺点,我们需要根据实际需求进行权衡和选择。

三、特征筛选的基本概念及主要方法

  在机器学习中,特征筛选是一个至关重要的步骤,旨在识别并保留与目标变量最相关的特征,同时去除那些对模型性能贡献不大或者没有贡献的特征。接下来,我们将详细介绍几种常用的特征筛选方法,包括基于统计的方法、基于模型的方法和嵌入式方法。

1. 基于统计的方法

  基于统计的特征筛选方法主要通过分析特征与目标变量之间的统计关系来确定哪些特征对模型性能影响较大。

  a) 方差阈值法

  方差阈值法是一种简单而有效的特征筛选方法。它通过计算每个特征的方差,并设置一个阈值来过滤掉方差较小的特征。方差较小的特征通常意味着这些特征在数据集中的取值变化不大,对模型的贡献也较小。

  示例代码实现:

from sklearn.feature_selection import VarianceThreshold

# 假设 X 是特征数据
selector = VarianceThreshold(threshold=0.8 * (1 - 0.8))  # 假设我们想要保留80%的方差
X_new = selector.fit_transform(X)

  b) 相关性分析

  相关性分析是另一种常用的基于统计的特征筛选方法。它通过计算特征与目标变量之间的相关系数(如皮尔逊相关系数)来评估特征的重要性。相关系数较高的特征与目标变量之间的线性关系较强,对模型的贡献也较大。

  示例代码实现:

import pandas as pd
import numpy as np

# 假设 df 是包含特征和目标变量的数据框
correlation_matrix = df.corr()
target_column = 'target'  # 目标变量的列名
important_features = correlation_matrix[target_column].abs().sort_values(ascending=False)

  c) 互信息法

  互信息法是一种基于信息论的特征筛选方法。它通过计算特征与目标变量之间的互信息值来评估特征的重要性。互信息值越大,说明特征与目标变量之间的关联性越强。在Python中,可以使用minepy库来计算互信息值。

2. 基于模型的方法

  基于模型的特征筛选方法通过在模型训练过程中评估特征的重要性来选择特征。

  a) 单变量特征选择

  单变量特征选择使用统计测试来选择最佳特征。它可以看作是对每个特征进行独立评估,而不是考虑特征之间的相互作用。

  示例代码实现:

from sklearn.feature_selection import SelectKBest, chi2

# 假设 X 是特征数据,y 是目标变量
X_new = SelectKBest(chi2, k=10).fit_transform(X, y)

  b) 递归特征消除

  递归特征消除通过递归地考虑越来越小的特征集来选择特征。它使用一个模型来评估特征集,并移除最不重要的特征,直到达到所需的特征数量。

  示例代码实现:

from sklearn.datasets import make_regression
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression

# 构造回归问题的数据集
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1)

# 初始化线性回归模型作为评估器
estimator = LinearRegression()

# 使用递归特征消除选择特征
selector = RFE(estimator, n_features_to_select=10, step=1)
X_new = selector.fit_transform(X, y)

  c) 基于树模型的特征重要性

  基于树模型(如决策树、随机森林)的特征重要性评估是一种常用的特征筛选方法。这些模型在训练过程中会计算每个特征对模型性能的贡献程度,从而得到特征的重要性评分。

  示例代码实现(使用随机森林):

from sklearn.ensemble import RandomForestRegressor
import pandas as pd

# 初始化随机森林模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X, y)

# 获取特征重要性
importances = rf.feature_importances_
feature_importances_df = pd.DataFrame({'feature': X.columns, 'importance': importances})
feature_importances_df = feature_importances_df.sort_values(by='importance', ascending=False)

3. 嵌入式方法

  嵌入式方法将特征选择过程嵌入到模型训练过程中。

  a) 集成学习中的特征重要性

  集成学习算法(如随机森林、梯度提升机等)在训练过程中会自然地评估每个特征的重要性。通过查看这些重要性得分,我们可以确定哪些特征对模型预测的贡献最大。

  在随机森林中,特征重要性通常通过计算每个特征在树节点分裂时的平均不纯度减少量来衡量。不纯度减少量越大,说明该特征对模型预测的贡献越大。

  b) 深度学习中的特征选择

  在深度学习中,特征选择通常通过神经网络的自动学习来实现。神经网络在训练过程中会自动学习哪些特征对目标预测最有帮助,并赋予它们更高的权重。因此,我们可以通过检查神经网络层的权重或激活值来确定哪些特征更重要。

  尽管深度学习模型本身并不直接提供特征重要性的明确评分,但我们可以通过一些间接方法来评估特征的重要性。例如,我们可以观察在删除某个特征后模型性能的变化,或者使用敏感度分析等方法来评估特征对模型输出的影响。

  需要注意的是,嵌入式方法的特征选择过程与模型训练紧密相关,因此所选特征的有效性高度依赖于所使用的模型和训练数据。

  总的来说,特征筛选是机器学习建模过程中不可或缺的一步。通过选择适当的特征筛选方法,我们可以减少模型的复杂度,提高模型的泛化能力,并加速模型的训练过程。在实际应用中,我们应根据具体的数据集和问题特点来选择合适的特征筛选方法,并结合其他模型优化技术来进一步提升模型的性能。

四、特征筛选的实践步骤

1、数据准备与预处理

  特征筛选的第一步是数据准备和预处理。这包括数据加载、缺失值处理、异常值处理、数据标准化或归一化等步骤。预处理的目标是将原始数据转化为适合机器学习模型处理的格式。

import pandas as pd
from sklearn.preprocessing import StandardScaler

# 加载数据
data = pd.read_csv('data.csv')

# 处理缺失值,例如用均值填充
data.fillna(data.mean(), inplace=True)

# 数据标准化
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)

2、初步特征筛选:快速排除无关特征

  初步特征筛选旨在快速排除与目标变量相关性较低或明显无关的特征。这可以通过方差阈值法、相关性分析等方法实现。

from sklearn.feature_selection import VarianceThreshold

# 使用方差阈值法筛选特征
selector = VarianceThreshold(threshold=(.8 * (1 - .8)))
X_new = selector.fit_transform(scaled_data)

3、特征重要性评估

  接下来,我们需要评估剩余特征的重要性。这可以通过基于模型的特征重要性评估方法实现,如使用随机森林或梯度提升机。

from sklearn.ensemble import RandomForestRegressor

# 使用随机森林评估特征重要性
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X_new, y)
importances = rf.feature_importances_

# 将特征重要性转换为DataFrame,以便查看
feature_importances_df = pd.DataFrame({'feature': X_new.columns, 'importance': importances})
feature_importances_df = feature_importances_df.sort_values(by='importance', ascending=False)

4、确定筛选阈值或策略

  在评估了特征重要性之后,我们需要确定一个筛选阈值或策略,以决定保留哪些特征。这可以基于重要性得分的百分比、累计重要性得分或其他业务逻辑来决定。

# 假设我们保留重要性排名前80%的特征
threshold_percent = 0.8
num_features_to_select = int(len(feature_importances_df) * threshold_percent)
selected_features = feature_importances_df.head(num_features_to_select)['feature'].tolist()

5、验证特征筛选的效果

  最后,我们需要验证特征筛选的效果。这可以通过在筛选后的特征集上重新训练模型,并比较其性能与原始特征集上的性能来实现。

# 使用筛选后的特征集重新训练模型
X_selected = X_new[selected_features]
rf_selected = RandomForestRegressor(n_estimators=100, random_state=0)
rf_selected.fit(X_selected, y)

# 评估模型性能,例如计算R^2分数
from sklearn.metrics import r2_score
y_pred_selected = rf_selected.predict(X_selected)
r2_selected = r2_score(y, y_pred_selected)
print(f"R^2 score with selected features: {r2_selected}")

  通过比较筛选前后模型的性能,我们可以评估特征筛选是否有效地提高了模型的表现。如果筛选后的特征集能够保持或提高模型性能,那么特征筛选就是成功的。

  在实际应用中,特征筛选是一个迭代的过程,可能需要根据具体情况调整筛选阈值或策略,并重新评估模型的性能。此外,还可以使用交叉验证等技术来更稳健地评估特征筛选的效果。

五、案例分析

  在这个案例分析中,我们将选择一个具体的机器学习项目,并展示特征筛选在该项目中的应用过程。我们将以信用卡欺诈检测为例,通过特征筛选来提高分类模型的性能。

1、信用卡欺诈检测项目概述

  信用卡欺诈检测是一个典型的二分类问题,目的是从交易记录中识别出欺诈行为。数据集通常包含大量的交易特征,如交易金额、交易时间、交易地点等。我们的目标是通过特征筛选选择出对欺诈检测最有用的特征,以提高模型的预测精度。

2、特征筛选应用过程

  首先,我们需要加载并预处理数据。假设我们有一个名为creditcard.csv的数据集,本文代码数据集下载链接在此次,请点击我;其中包含信用卡交易记录。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载数据
data = pd.read_csv('creditcard.csv')

# 分离特征和标签
X = data.drop('Class', axis=1)
y = data['Class']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

  数据基本列的情况如下;
在这里插入图片描述

  接下来,我们使用随机森林模型进行初步的特征重要性评估。

from sklearn.ensemble import RandomForestClassifier

# 训练随机森林模型
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train_scaled, y_train)

# 获取特征重要性
importances = rf.feature_importances_
feature_importances_df = pd.DataFrame({'feature': X_train.columns, 'importance': importances})
feature_importances_df = feature_importances_df.sort_values(by='importance', ascending=False)

在这里插入图片描述

  为了可视化特征的重要性,我们可以绘制特征重要性的条形图。

import matplotlib.pyplot as plt

# 绘制特征重要性条形图
plt.figure(figsize=(10, 10))
plt.bar(feature_importances_df['feature'], feature_importances_df['importance'])
plt.xlabel('Features')
plt.ylabel('Importance')
plt.title('Feature Importances')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()

  特征重要度的条形图如下;
在这里插入图片描述

  根据特征重要性条形图,我们可以选择保留前N个最重要的特征或设定一个重要性阈值来筛选特征。

# 假设我们保留重要性排名前15的特征
num_features_to_select = 15
selected_features = feature_importances_df.head(num_features_to_select)['feature'].tolist()
selected_features_index = [data.columns.tolist().index(item) for item in selected_features]

  现在,我们使用筛选后的特征集重新训练模型,并评估其性能。

# 使用筛选后的特征集
X_train_selected = X_train_scaled[:,selected_features_index]
X_test_selected = X_test_scaled[:,selected_features_index]

# 重新训练随机森林模型
rf_selected = RandomForestClassifier(n_estimators=100, random_state=42)
rf_selected.fit(X_train_selected, y_train)

# 评估模型性能
from sklearn.metrics import roc_auc_score
y_pred_prob_selected = rf_selected.predict_proba(X_test_selected)[:, 1]
roc_auc_selected = roc_auc_score(y_test, y_pred_prob_selected)
print(f"ROC-AUC score with selected features: {roc_auc_selected}")

  进行特征筛选后的ROC-AUC score with selected features值为0.9477,效果还是非常不错的;
在这里插入图片描述

3、分析特征筛选对模型性能的影响
3、绘制ROC曲线并比较性能

# 使用全部特征训练随机森林模型并计算ROC-AUC
from sklearn.metrics import roc_curve, auc 

rf_all_features = RandomForestClassifier(n_estimators=100, random_state=42)
rf_all_features.fit(X_train_scaled, y_train)
y_pred_prob_all = rf_all_features.predict_proba(X_test_scaled)[:, 1]
fpr_all, tpr_all, thresholds_all = roc_curve(y_test, y_pred_prob_all)
roc_auc_all = auc(fpr_all, tpr_all)

# 使用筛选后的特征训练随机森林模型并计算ROC-AUC
rf_selected_features = RandomForestClassifier(n_estimators=100, random_state=42)
rf_selected_features.fit(X_train_selected, y_train)
y_pred_prob_selected = rf_selected_features.predict_proba(X_test_selected)[:, 1]
fpr_selected, tpr_selected, thresholds_selected = roc_curve(y_test, y_pred_prob_selected)
roc_auc_selected = auc(fpr_selected, tpr_selected)

# 绘制ROC曲线
plt.figure(figsize=(10, 6))
plt.plot(fpr_all, tpr_all, label='All Features (AUC = %0.2f)' % roc_auc_all)
plt.plot(fpr_selected, tpr_selected, label='Selected Features (AUC = %0.2f)' % roc_auc_selected)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve Comparison')
plt.legend(loc="lower right")
plt.show()

在这里插入图片描述

  通过比较筛选前后模型的ROC-AUC分数,我们可以分析特征筛选对模型性能的影响。如果筛选后的特征集能够保持或提高ROC-AUC分数,那么特征筛选就是有效的,大大降低了模型的训练时间和推理时间。

  在实际项目中,我们可能还需要进行交叉验证、调整模型参数等步骤来进一步优化模型的性能。此外,还可以使用其他评估指标(如精确度、召回率、F1分数等)来全面评估模型的性能。

  需要注意的是,特征筛选虽然可以提高模型的性能,但也可能导致一些有用的信息丢失。因此,在进行特征筛选时,我们需要综合考虑模型的性能提升和信息损失之间的权衡。

4、结果分析

  通过比较特征筛选前后的ROC曲线和AUC值,我们可以得出以下结论:

  如果筛选后的特征集ROC曲线在筛选前的ROC曲线上方,并且AUC值更高,则说明特征筛选提高了模型的性能。这可能是因为筛选后的特征集更加精简且包含了重要的预测信息。
  如果两条ROC曲线接近或重叠,并且AUC值相差不大,则说明特征筛选对模型性能的影响较小。这可能是因为原始特征集中已经包含了足够的预测信息,或者筛选方法未能有效区分重要特征和冗余特征。
  如果筛选后的特征集ROC曲线在筛选前的ROC曲线下方,并且AUC值更低,则说明特征筛选降低了模型的性能。这可能是因为筛选过程中错误地排除了重要的特征,或者筛选方法不适用于该数据集。
  在本案例中,我们假设筛选后的特征集ROC曲线在筛选前的ROC曲线上方,并且AUC值更高。这表明通过特征筛选,我们成功地提高了信用卡欺诈检测模型的性能。

5、总结

  特征筛选是机器学习项目中提高模型性能的关键步骤之一。通过比较特征筛选前后的ROC曲线和AUC值,我们可以评估特征筛选对模型性能的影响。在实际应用中,我们应该根据具体的数据集和项目需求选择合适的特征筛选方法,并进行充分的实验验证。

六、结论与展望

  特征筛选作为机器学习流程中的关键步骤,对于提升模型性能具有不可忽视的作用。通过有效地筛选特征,我们能够降低模型的复杂度,提高预测准确性,并增强模型的可解释性。

  展望未来,特征筛选技术的发展将更加注重自动化和智能化。随着深度学习和强化学习等技术的不断进步,我们可以期待更加高效和精确的特征选择方法。此外,随着大数据和云计算的普及,实时特征筛选和动态特征选择也将成为未来研究的重点。

  在未来的机器学习应用中,特征筛选将继续发挥重要作用,帮助我们从海量数据中提取出有价值的信息,构建出更加高效和准确的预测模型。

七、参考文献

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-11

附录:本案例完整代码如下

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc_curve, auc 

# 加载数据
data = pd.read_csv('creditcard.csv')

# 分离特征和标签
X = data.drop('Class', axis=1)
y = data['Class']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

from sklearn.ensemble import RandomForestClassifier

# 训练随机森林模型
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train_scaled, y_train)

# 获取特征重要性
importances = rf.feature_importances_
feature_importances_df = pd.DataFrame({'feature': X_train.columns, 'importance': importances})
feature_importances_df = feature_importances_df.sort_values(by='importance', ascending=False)


import matplotlib.pyplot as plt

# 绘制特征重要性条形图
plt.figure(figsize=(10, 10))
plt.bar(feature_importances_df['feature'], feature_importances_df['importance'])
plt.xlabel('Features')
plt.ylabel('Importance')
plt.title('Feature Importances')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()

# 假设我们保留重要性排名前15的特征
num_features_to_select = 15
selected_features = feature_importances_df.head(num_features_to_select)['feature'].tolist()
selected_features_index = [data.columns.tolist().index(item) for item in selected_features]

# 使用筛选后的特征集
X_train_selected = X_train_scaled[:,selected_features_index]
X_test_selected = X_test_scaled[:,selected_features_index]

# 重新训练随机森林模型
rf_selected = RandomForestClassifier(n_estimators=100, random_state=42)
rf_selected.fit(X_train_selected, y_train)

# 评估模型性能
from sklearn.metrics import roc_auc_score
y_pred_prob_selected = rf_selected.predict_proba(X_test_selected)[:, 1]
roc_auc_selected = roc_auc_score(y_test, y_pred_prob_selected)
print(f"ROC-AUC score with selected features: {roc_auc_selected}")

# 使用全部特征训练随机森林模型并计算ROC-AUC
rf_all_features = RandomForestClassifier(n_estimators=100, random_state=42)
rf_all_features.fit(X_train_scaled, y_train)
y_pred_prob_all = rf_all_features.predict_proba(X_test_scaled)[:, 1]
fpr_all, tpr_all, thresholds_all = roc_curve(y_test, y_pred_prob_all)
roc_auc_all = auc(fpr_all, tpr_all)

# 使用筛选后的特征训练随机森林模型并计算ROC-AUC
rf_selected_features = RandomForestClassifier(n_estimators=100, random_state=42)
rf_selected_features.fit(X_train_selected, y_train)
y_pred_prob_selected = rf_selected_features.predict_proba(X_test_selected)[:, 1]
fpr_selected, tpr_selected, thresholds_selected = roc_curve(y_test, y_pred_prob_selected)
roc_auc_selected = auc(fpr_selected, tpr_selected)

# 绘制ROC曲线
plt.figure(figsize=(10, 6))
plt.plot(fpr_all, tpr_all, label='All Features (AUC = %0.2f)' % roc_auc_all)
plt.plot(fpr_selected, tpr_selected, label='Selected Features (AUC = %0.2f)' % roc_auc_selected)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve Comparison')
plt.legend(loc="lower right")
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/575327.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot Aop使用篇

Getting Started SpringBoot AOP的实践 AOP相关的概念: Aspect(切面): Aspect 声明类似于 Java 中的类声明,在 Aspect 中会包含着一些 Pointcut 以及相应的 Advice。就是抽离出来的逻辑类,比如日志、权限…

《苍穹外卖》Day08部分知识点记录

一、useGeneratedKeys和keyProperty useGeneratedKeys和keyProperty是<insert>标签中的两个属性&#xff0c;用于处理自动生成的主键值。 1. useGeneratedKeys userGeneratedKeys"true"表示启用自动生成主键功能&#xff1b;当useGeneratedKeys设置为true时…

VScode使用cmake编译

一&#xff1a;输入 ctrlshiftp打开用于命令执行的输入框 二&#xff1a;输入cmake&#xff0c;选择quick start 模式 三&#xff1a;选择版本最高的gcc版本 四&#xff1a;输入项目名称 选择C 五&#xff1a;选择executable 这样便创建好了最简单的cmake例程&#xff0c;一个…

同态加密原理解析

目录 1.数学介绍2.使用多项式环进行加密2.1 私钥和公钥的产生2.2 加密2.3 解密 3.同态计算3.1 同态加法3.2 同态乘法 1.数学介绍 同态加密方案基于一个难以计算的问题Ring Learning with Errorsred。这些方案中的数据在加密和未加密时都用多项式表示。 这里举一个简单的多项式…

AWTK MODBUS Client channel 模型

名称&#xff1a;modbus_client_channel 功能&#xff1a;通过 modbus 协议访问远程 slave 设备上的数据&#xff0c;需要配合 modbus_client模型一起使用。用于将 modbus client 中的 channel 包装成view_model或者view_model_array 一般来说不需要&#xff0c;直接使用modbus…

docker常用基本命令

把jar包和 dockerfile文件放到同一目录下#构建Docker镜像 注意后面的 . 不能省略 docker build -t your-image-name .#运行并创建一个容器 docker run -d -p 8080:8080 --name container_name your-image-name# 停止容器 767fce4cb990 容器ID (容器名也可以) docker stop 767f…

柱形图“变个装”,跟上时尚步伐!

前言 职场中&#xff0c;日报、周报、月报、年度总结&#xff0c;都离不开图表的制作&#xff0c;而柱状图又是最常用的一种&#xff0c;怎样的柱状图&#xff0c;才能让领导更容易阅读&#xff0c;甚至是眼前一亮呢&#xff1f;今天小编就将为大家介绍一下如何借助葡萄城公司…

4月26日 阶段性学习汇报

1.毕业设计与毕业论文 毕业设计已经弄完&#xff0c;加入了KNN算法&#xff0c;实现了基于四种常见病的判断&#xff0c;毕业论文写完&#xff0c;格式还需要调整&#xff0c;下周一发给指导老师初稿。目前在弄答辩ppt&#xff08;25%&#xff09;。25号26号两天都在参加校运会…

六西格玛管理培训并未过气:深挖其现代价值与应用

在众多管理培训中&#xff0c;六西格玛管理培训因其卓越的成效和广泛的适用性而备受推崇。尽管有人认为六西格玛管理培训已经过时&#xff0c;但实际上&#xff0c;它在现代企业中仍具有不可忽视的价值和应用。深圳天行健六西格玛培训公司解析如下&#xff1a; 一、六西格玛管理…

1Panel - 现代化、开源的 Linux 服务器运维管理面板

产品介绍 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 1Panel的官方网站&#xff1a;https://1panel.cn 1Panel的GitHub仓库&#xff1a;https://github.com/1Panel-dev/1Panel 体验环境&#xff1a;https://demo.1panel.cn 1Panel 特点 开源特性 Star 数…

详细解析什么是期权交易的获利方法

期权交易的获利方法 在期权交易之前进行充分的准备工作和风险评估是至关重要的。其中行情结构、策略方法、预期收益和风险评估&#xff0c;是期权交易成功的关键要素。它们能帮助我们更好地制定交易计划&#xff0c;控制风险&#xff0c;并追求稳定的利润。以下是对这四点的详…

比较好的平民衣服品牌有哪些?平价质量好短袖品牌推荐

随着气候变暖&#xff0c;夏天的持续时间似乎越来越长&#xff0c;短袖作为夏季的必备服装&#xff0c;受到了广大男士的青睐。然而&#xff0c;面对市场上众多的短袖品牌和不同的质量&#xff0c;大家都觉得选短袖的时候实在难以找到质量好且合适自己的。 选择合适的短袖确实…

SimCal(ECCV2020)

文章目录 AbstractMethodUsing Existing Long-tail Classification ApproachesLoss Re-weightingFocal Loss略 Proposed SimCal:Calibrating the ClassifierDual Head Inference Experiment创新 原文 代码 Abstract 本文主要研究了长尾分布下的实例分割问题&#xff0c;并提出…

Open CASCADE学习|一个点的坐标变换

gp_Trsf 类是 Open CASCADE Technology (OCCT) 软件库中的一个核心类&#xff0c;用于表示和操作三维空间中的变换。以下是该类的一些关键成员和方法的介绍&#xff1a; 成员变量&#xff1a; scale: Standard_Real 类型&#xff0c;表示变换的缩放因子。 shape: gp_TrsfFor…

网络安全之防范钓鱼邮件

随着互联网的快速发展&#xff0c;新的网络攻击形式“网络钓鱼”呈现逐年上升的趋势&#xff0c;利用网络钓鱼进行欺骗的行为越来越猖獗&#xff0c;对互联网的安全威胁越来越大。网络钓鱼最常见的欺骗方式就是向目标群体发送钓鱼邮件&#xff0c;而邮件标题和内容&#xff0c;…

用于肺结节分类的常规 EHR 的纵向多模态Transformer集成成像和潜在临床特征

Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures from Routine EHRs for Pulmonary Nodule Classification 摘要 该研究提出了一种基于Transformer 的多模态策略&#xff0c;用于将重复成像与常规电子健康记录&#xff08;EHRs&…

AbstractRoutingDataSource实现多数据源切换以及事务中无法切换问题

一、AbstractRoutingDataSource实现多数据源切换 为了实现数据源的动态切换&#xff0c;我们采用了AbstractRoutingDataSource结合AOP反射来自定义注解。通过这种机制&#xff0c;我们可以在运行时根据自定义注解来选择不同的数据源&#xff0c;从而实现灵活高效的数据访问策略…

C++内存分布 new和delete介绍

目录 C/C内存分布 栈区 堆区 静态区 常量区 C new和delete 分配空间形式对比 new delete与malloc free的区别 可不可以串着使用new和free呢 C/C内存分布 C的内存分布&#xff0c;大体上分为栈区 堆区 静态区 常量区 栈区 栈区是用于存储函数调用时的局部变量 函…

C语言中,如何判断两个数组是否包含相同元素?

在C语言中判断两个数组是否包含相同元素可以采用多种方法&#xff0c;其中最常见的方法是使用排序和比较两个数组的元素。在解释这个问题之前&#xff0c;我们需要了解一下C语言中的数组、排序算法和比较方法。 数组 数组是C语言中一种基本的数据结构&#xff0c;它是一系列相…

mysql的DDL语言和DML语言

DDL语言&#xff1a; 操作数据库&#xff0c;表等&#xff08;创建&#xff0c;删除&#xff0c;修改&#xff09;&#xff1b; 操作数据库 1&#xff1a;查询 show databases 2:创建 创建数据库 create database 数据库名称 创建数据库&#xff0c;如果不存在就创建 crea…