机器学习——过拟合

一、过拟合得表现

模型在训练过程中,除了会出现过拟合现象,还有可能出现欠拟合的情况。相比而言,后者通常发生在建模前期,只要做好特征工程一般可以解决模型欠拟合问题。下图描述了模型在训练数据集上的三种情况:
在这里插入图片描述
其中曲线代表了模型的拟合结果,可以看出过拟合的曲线几乎对每个训练样本的拟合值都准确无误,展现了低偏差特点;另外过拟合的曲线形式上更复杂,波动性更大,预测的结果具有高方差特点。相反,欠拟合的曲线呈现低方差、高偏差的结果。

理论上模型的偏差和方差呈负相关性,既模型越复杂,偏差越小,方差越大。通常“鲁棒性”强的模型能在偏差和方差中学习到一个较好的平衡点。

二、过拟合的原因

1、数据特征的质量
这里的数据质量并非指数据缺失严重或数值失真,而是指训练集和测试集的特征分布不一致,或者说并非来源于同一分布。试想用数据集A训练得到的模型去预测差异很大的数据集B,结果肯定不尽人意。

其次在特征工程阶段,“暴力”构造的特征中会包含过多训练集的噪声信息,这类只适合于训练集的冗余特征会降低模型的泛化能力。

2、模型的问题
模型结构的超参数设置也有可能造成过拟合现象。以决策树模型为例,令树的深度越大、叶子节点数越少,模型就越复杂,对训练集的数据分类更精细,会更容易导致模型过拟合。

大部分ML模型的学习过程中都运用了类似梯度下降法的迭代优化算法,过多的迭代次数会出现过度训练(Overtraining),让模型最终的参数过度适应训练集,加重过拟合。

三、“缓解” 过拟合的措施

由于数据噪声的存在,过拟合问题无法彻底解决,但是可以通过以下方法来缓解模型过拟合。

1、特征选择
特征选择通过对大量特征作进一步筛选,排除无关特征和冗余特征。对于广义线性模型而言,模型复杂度随着特征特征维度的降低而降低,可以有效缓解过拟合问题。

通常有两种方式做特征选择:
(1)指标筛选:利用信息熵、Pearson相关系数、卡方检验统计量等指标计算特征不目标发量间的相关程度对所有特征进行筛选,但这种方式没有考虑到特征之间的关联作用,可能把有用的关联特征踢掉。
(2)正则化(Regularization):在模型损失函数中加入合适的惩罚项,常见的惩罚项有L1正则化和L2正则化(既L1和L2范数)。其中L1正则化有劣于生成一个稀疏权值矩阵,进而可以用于特征选择,可以参考Lasso模型。

2、模型融合
不同类型的模型具有不同的特点,所以结合各种模型的预测结果也能有效降低过拟合的风险,提升预测精度。一般对模型融合有两种方式:加权平均法和Stacking,其中加权平均法比较易于理解,就是根据各模型的线下得分赋予一个权重,最终根据各自权重对预测结果进行加权平均。

而Stacking号称各类数据比赛的冲分“杀器”,主要思想是训练模型来学习使用底层学习器的预测结果,下图是一个5折stacking中基模型在所有数据集上生成预测结果的过程,次学习器会基于模型的预测结果进行再训练,单个基模型生成预测结果的过程是:
在这里插入图片描述

但是当基模型较复杂时,Stacking的训练代价会很高,实际应用中需要根据情况而定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/574826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二阶响应曲面分析

文章目录 一、二阶响应曲面介绍1.1 什么时候用二阶响应曲面1. 非线性关系2. 探寻极值(最大化或最小化)3. 复杂的交互作用4. 精度要求高5. 探索性分析阶段 1.2响应曲面的特征 二、实例说明2.1 二阶模型求解 参考自《实验设计与数据处理》一书 一、二阶响应…

HTML5 服务器发送事件(Server-Sent Events)

参考:HTML5 服务器发送事件(Server-Sent Events) | 菜鸟教程 一,sse介绍 Server-Sent 事件 - 单向消息传递 Server-Sent 事件指的是网页自动获取来自服务器的更新。 以前也可能做到这一点,前提是网页不得不询问是否有可用的更新。通过服务…

Verilog基础语法——parameter、localparam与`define

Verilog基础语法——parameter、localparam与define 写在前面一、localparam二、parameter三、define写在最后 写在前面 在使用Verilog编写RTL代码时,如果需要定义一个常量,可以使用define、parameter和localparam三种进行定义与赋值。 一、localparam …

【Linux深造日志】运维工程师必会Linux常见命令以及周边知识!

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 哈喽各位宝子们好啊!我是博主鸽芷咕。日志这个东西我相信大家都不陌生,在 linxu/Windows 系统…

新媒体运营-----短视频运营-----PR视频剪辑----字幕

新媒体运营-----短视频运营-----PR视频剪辑-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/138079659 文章目录 1. PR创建字幕2. 通过剪映来智能添加字幕3. 如何像文本对象一样,给字幕做特效4. 写字特效 1. PR创建字…

ssm079基于SSM框架云趣科技客户管理系统+jsp

客户管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本客户管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处…

Gateway基础知识

文章目录 Spring Cloud GateWay 用法核心概念请求流程两种配置方式设置日志(建议设置)路由的各种断言断言The After Route Predicate FactoryThe Before Route Predicate FactoryThe Between Route Predicate FactoryThe Cookie Route Predicate Factory…

Java使用IText根据pdf模板创建pdf文件

1.导包 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.10</version></dependency><dependency><groupId>com.itextpdf</groupId><artifactId>itext-as…

Rust之构建命令行程序(六):信息写入

开发环境 Windows 11Rust 1.77.2 VS Code 1.88.1 项目工程 这次创建了新的工程minigrep. 将错误信息写入标准错误而不是标准输出 此时&#xff0c;我们正在使用宏println!将所有输出写入终端。在大多数终端中&#xff0c;有两种输出:一般信息的标准输出&#xff08;stdout&…

docker安装【zookeeper】【kafka】【provectuslabs/kafka-ui】记录

目录 1.安装zookeeper:3.9.2-jre-172.安装kafka:3.7.03.安装provectuslabs/kafka-ui &#xff08;选做&#xff09;新环境没有jdk&#xff0c;安装jdk-17.0.10备用 mkdir -p /export/{data,apps,logs,conf,downloads}cd /export/downloadscurl -OLk https://download.oracle.…

【VScode】VScode+如何从git上面拉取代码?

目录标题 1、打开VSCode。File>New Window。2、打开集成终端&#xff08;Terminal > New Terminal 或使用快捷键Ctrl \)。3、在终端中&#xff0c;使用Git命令克隆仓库。4、打开项目。 1、打开VSCode。File>New Window。 2、打开集成终端&#xff08;Terminal > …

基于HAL库的stm32中定时器的使用--定时器中断每隔一秒进行led灯的闪烁以及定时器生成PWM

一&#xff1a;什么是定时器 &#xff08;1&#xff09;stm32定时器&#xff0c;是存在于stm32单片机中的一个外设。stm32共有八个定时器&#xff0c;两个高级定时器&#xff08;TIM1、TIM8&#xff09;&#xff0c;四个通用定时器&#xff08;TIM2、TIM3、TIM4、TIM5&#xff…

Java中的ArrayList集合

特点&#xff1a; ArrayList中的一些方法&#xff1a; 1、add(Object element):向集合的末尾添加元素 add(int index,Object element):在列表的指定位置&#xff08;从0开始&#xff09;插入指定元素 2、size():返回列表的中的元素个数 3、get(int index):返回下标为index位置的…

基于昇腾AI 使用AscendCL实现垃圾分类和视频物体分类应用

现如今&#xff0c;人工智能迅猛发展&#xff0c;AI赋能产业发展的速度正在加快&#xff0c;“AI”的需求蜂拥而来&#xff0c;但AI应用快速落地的过程中仍存在很大的挑战&#xff1a;向下需要适配的硬件&#xff0c;向上需要完善的技术支持&#xff0c;两者缺一不可。 基于此&…

SQL中的锁

一、概述 介绍 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资(CPU、RAM、I/0)的争用以外&#xff0c;数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题&#xff0c;锁冲…

02-JVM学习记录-运行时数据区

二、运行时数据区 每个JVM只有一个Runtime实例&#xff0c;只有一个运行时数据区。 虚拟机栈、堆、方法区最重要 方法区和堆与虚拟机的生命周期相同&#xff08;随虚拟机启动而创建&#xff0c;虚拟机退出而销毁&#xff09;&#xff0c;程序计数器、虚拟机栈、本地方法栈生命…

JavaScript云LIS系统概述 前端框架JQuery+EasyUI+Bootstrap医院云HIS系统源码 开箱即用

云LIS系统概述JavaScript前端框架JQueryEasyUIBootstrap医院云HIS系统源码 开箱即用 云LIS&#xff08;云实验室信息管理系统&#xff09;是一种结合了计算机网络化信息系统的技术&#xff0c;它无缝嵌入到云HIS&#xff08;医院信息系统&#xff09;中&#xff0c;用于连…

wps/word中字体安装教程

问题&#xff1a;下载的字体怎么导入wps/word wps或word中没有相应字体&#xff0c;怎么导入。其实方法很简单。 Step 1&#xff1a;下载字体 首先&#xff0c;在网上搜索自己喜欢的字体&#xff0c;然后下载到本地。字体的格式通常是.ttf 下面是我网上找的字体&#xff08…

Vue 3 路由机制详解与实践

一、路由的理解 路由是指导用户界面导航的一种机制。它通过映射 URL 到应用程序的不同视图组件来实现页面间的切换和导航。 二、路由基本切换效果 路由基本切换效果指的是当用户在应用程序中进行页面导航时&#xff0c;通过路由可以实现页面的切换&#xff0c;从而展示不同的…

[Flutter3] 记录Dio的简单封装(一)

文章目录 效果使用ResponseEntity类DioManager封装_onResponse / _onDioException 的设计Response的处理catch处理 效果 请求成功/失败/异常的日志输出效果 成功: 失败:500 失败:404 网络异常: 使用 举个使用的例子, 在调用 DioManager的时候, 直接通过返回值的状态, 来…