CMake简介

文章目录

  • 为什么需要头文件
    • 为什么 C++ 需要声明
    • 头文件 - 批量插入几行代码的硬核方式
    • 头文件进阶 - 递归地使用头文件
  • CMake
    • 什么是编译器
    • 多文件编译与链接
    • CMake 的命令行调用
    • 为什么需要库(library)
    • CMake 中的静态库与动态库
    • CMake 中的子模块
    • 子模块的头文件如何处理
    • 目标的一些其他选项
    • 第三方库 - 作为纯头文件引入
    • 第三方库 - 作为子模块引入

为什么需要头文件

为什么 C++ 需要声明

在多文件编译章中,说到了需要在 main.cpp 声明 hello() 才能引用。为什么?

因为需要知道函数的参数和返回值类型:这样才能支持重载,隐式类型转换等特性。例如 show(3),如果声明了 void show(float x),那么编译器知道把 3 转换成 3.0f 才能调用。
让编译器知道 hello 这个名字是一个函数,不是一个变量或者类的名字:这样当我写下 hello() 的时候,他知道我是想调用 hello 这个函数,而不是创建一个叫 hello 的类的对象。
其实,C++ 是一种强烈依赖上下文信息的编程语言,举个例子:

vector < MyClass > a;   // 声明一个由 MyClass 组成的数组

如果编译器不知道 vector 是个模板类,那他完全可以把 vector 看做一个变量名,把 < 解释为小于号,从而理解成判断‘vector’这个变量的值是否小于‘MyClass’这个变量的值。
正因如此,我们常常可以在 C++ 代码中看见这样的写法:typename decay::type
因为 T 是不确定的,导致编译器无法确定 decay 的 type 是一个类型,还是一个值。因此用 typename 修饰来让编译器确信这是一个类型名……
在这里插入图片描述
为了使用 hello 这个函数,我们刚才在 main.cpp 里声明了 void hello() 。
但是如果另一个文件 other.cpp 也需要用 hello 这个函数呢?也在里面声明一遍?
如果能够只写一遍,然后自动插入到需要用 hello 的那些 .cpp 里就好了……在这里插入图片描述

头文件 - 批量插入几行代码的硬核方式

没错,C 语言的前辈们也想到了,他们说,既然每个 .cpp 文件的这个部分是一模一样的,不如我把 hello() 的声明放到单独一个文件 hello.h 里,然后在需要用到 hello() 这个声明的地方,打上一个记号,#include “hello.h” 。然后用一个小程序,自动在编译前把引号内的文件名 hello.h 的内容插入到记号所在的位置,这样不就只用编辑 hello.h 一次了嘛~
后来,这个编译前替换的步骤逐渐变成编译器的了一部分,称为预处理阶段,#define 定义的宏也是这个阶段处理的。
此外,在实现的文件 hello.cpp 中导入声明的文件 hello.h 是个好习惯,可以保证当 hello.cpp 被修改时,比如改成 hello(int),编译器能够发现 hello.h 声明的 hello() 和定义的 hello(int) 不一样,避免“沉默的错误”。在这里插入图片描述
实际上 cstdio 也无非是提供了 printf 等一系列函数声明的头文件而已,实际的实现是在 libc.so 这个动态库里。其中 这种形式表示不要在当前目录下搜索,只在系统目录里搜索,”hello.h” 这种形式则优先搜索当前目录下有没有这个文件,找不到再搜索系统目录。
此外,在实现的文件 hello.cpp 中也导入声明的文件 hello.h 是个好习惯:
可以保证当 hello.cpp 被修改时,比如改成 hello(int),编译器能够发现 hello.h 声明的 hello() 和定义的 hello(int) 不一样,避免“沉默的错误”(虽然对支持重载的 C++ 不奏效)
可以让 hello.cpp 中的函数需要相互引用时,不需要关心定义的顺序。

头文件进阶 - 递归地使用头文件

在 C++ 中常常用到很多的类,和函数一样,类的声明也会被放到头文件中。
有时候我们的函数声明需要使用到某些类,就需要用到声明了该类的头文件,像这样递归地 #include 即可:在这里插入图片描述
但是这样造成一个问题,就是如果多个头文件都引用了 MyClass.h,那么 MyClass 会被重复定义两遍:在这里插入图片描述
解决方案:在头文件前面加上一行:#pragma once
这样当预处理器第二次读到同一个文件时,就会自动跳过
通常头文件都不想被重复导入,因此建议在每个头文件前加上这句话
在这里插入图片描述

CMake

什么是编译器

编译器,是一个根据源代码生成机器码的程序。

 >g++ main.cpp -o a.out

该命令会调用编译器程序g++,让他读取main.cpp中的字符串(称为源码),并根据C++标准生成相应的机器指令码,输出到a.out这个文件中,(称为可执行文件)。

> ./a.out

之后执行该命令,操作系统会读取刚刚生成的可执行文件,从而执行其中编译成机器码,调用系统提供的printf函数,并在终端显示出Hello, world。
在这里插入图片描述

多文件编译与链接

单文件编译虽然方便,但也有如下缺点:
所有的代码都堆在一起,不利于模块化和理解。
工程变大时,编译时间变得很长,改动一个地方就得全部重新编译。
因此,我们提出多文件编译的概念,文件之间通过符号声明相互引用。

> g++ -c hello.cpp -o hello.o
> g++ -c main.cpp -o main.o

其中使用 -c 选项指定生成临时的对象文件 main.o,之后再根据一系列对象文件进行链接,得到最终的a.out:

> g++ hello.o main.o -o a.out

在这里插入图片描述

CMake 的命令行调用

读取当前目录的 CMakeLists.txt,并在 build 文件夹下生成 build/Makefile:

> cmake -B build

让 make 读取 build/Makefile,并开始构建 a.out:

> make -C build

以下命令和上一个等价,但更跨平台:

> cmake --build build

执行生成的 a.out:

> build/a.out

在这里插入图片描述

为什么需要库(library)

在这里插入图片描述
有时候我们会有多个可执行文件,他们之间用到的某些功能是相同的,我们想把这些共用的功能做成一个库,方便大家一起共享。
库中的函数可以被可执行文件调用,也可以被其他库文件调用。
库文件又分为静态库文件和动态库文件。
其中静态库相当于直接把代码插入到生成的可执行文件中,会导致体积变大,但是只需要一个文件即可运行。
而动态库则只在生成的可执行文件中生成“插桩”函数,当可执行文件被加载时会读取指定目录中的.dll文件,加载到内存中空闲的位置,并且替换相应的“插桩”指向的地址为加载后的地址,这个过程称为重定向。这样以后函数被调用就会跳转到动态加载的地址去。
Windows:可执行文件同目录,其次是环境变量%PATH%
Linux:ELF格式可执行文件的RPATH,其次是/usr/lib等


CMake 中的静态库与动态库

CMake 除了 add_executable 可以生成可执行文件外,还可以通过 add_library 生成库文件。
add_library 的语法与 add_executable 大致相同,除了他需要指定是动态库还是静态库:

add_library(test STATIC source1.cpp source2.cpp)  # 生成静态库 libtest.a
add_library(test SHARED source1.cpp source2.cpp)  # 生成动态库 libtest.so

动态库有很多坑,特别是 Windows 环境下,初学者自己创建库时,建议使用静态库。
但是他人提供的库,大多是作为动态库的, 之后会讨论如何使用他人的库。
创建库以后,要在某个可执行文件中使用该库,只需要:
target_link_libraries(myexec PUBLIC test) # 为 myexec 链接刚刚制作的库 libtest.a
其中 PUBLIC 的含义稍后会说明(CMake 中有很多这样的大写修饰符)
在这里插入图片描述

CMake 中的子模块

复杂的工程中,我们需要划分子模块,通常一个库一个目录,比如:
在这里插入图片描述

这里我们把 hellolib 库的东西移到 hellolib 文件夹下了,里面的 CMakeLists.txt 定义了 hellolib 的生成规则。
要在根目录使用他,可以用 CMake 的 add_subdirectory 添加子目录,子目录也包含一个 CMakeLists.txt,其中定义的库在 add_subdirectory 之后就可以在外面使用。
子目录的 CMakeLists.txt 里路径名(比如 hello.cpp)都是相对路径,这也是很方便的一点。

在这里插入图片描述

子模块的头文件如何处理

因为 hello.h 被移到了 hellolib 子文件夹里,因此 main.cpp 里也要改成:
在这里插入图片描述

如果要避免修改代码,我们可以通过 target_include_directories 指定
a.out 的头文件搜索目录:(其中第一个 hellolib 是库名,第二个是目录)
在这里插入图片描述

这样甚至可以用 <hello.h> 来引用这个头文件了,因为通过 target_include_directories 指定的路径会被视为与系统路径等价:
在这里插入图片描述
但是这样如果另一个 b.out 也需要用 hellolib 这个库,难道也得再指定一遍搜索路径吗?
不需要,其实我们只需要定义 hellolib 的头文件搜索路径,引用他的可执行文件 CMake 会自动添加这个路径:

在这里插入图片描述

这里用了 . 表示当前路径,因为子目录里的路径是相对路径,类似还有 … 表示上一层目录。
此外,如果不希望让引用 hellolib 的可执行文件自动添加这个路径,把 PUBLIC 改成 PRIVATE 即可。这就是他们的用途:决定一个属性要不要在被 link 的时候传播。

目标的一些其他选项

除了头文件搜索目录以外,还有这些选项,PUBLIC 和 PRIVATE 对他们同理:

target_include_directories(myapp PUBLIC /usr/include/eigen3)  # 添加头文件搜索目录
target_link_libraries(myapp PUBLIC hellolib)                  # 添加要链接的库
target_add_definitions(myapp PUBLIC MY_MACRO=1)               # 添加一个宏定义
target_add_definitions(myapp PUBLIC -DMY_MACRO=1)             # 与 MY_MACRO=1 等价
target_compile_options(myapp PUBLIC -fopenmp)                 # 添加编译器命令行选项
target_sources(myapp PUBLIC hello.cpp other.cpp)              # 添加要编译的源文件

以及可以通过下列指令(不推荐使用),把选项加到所有接下来的目标去:

include_directories(/opt/cuda/include)     # 添加头文件搜索目录
link_directories(/opt/cuda)                # 添加库文件的搜索路径
add_definitions(MY_MACRO=1)                # 添加一个宏定义
add_compile_options(-fopenmp)              # 添加编译器命令行选项

第三方库 - 作为纯头文件引入

有时候我们不满足于 C++ 标准库的功能,难免会用到一些第三方库。
最友好的一类库莫过于纯头文件库了,这里是一些好用的 header-only 库:

nothings/stb - 大名鼎鼎的 stb_image 系列,涵盖图像,声音,字体等,只需单头文件!
Neargye/magic_enum - 枚举类型的反射,如枚举转字符串等(实现方式很巧妙)
g-truc/glm - 模仿 GLSL 语法的数学矢量/矩阵库(附带一些常用函数,随机数生成等)
Tencent/rapidjson - 单纯的 JSON 库,甚至没依赖 STL(可定制性高,工程美学经典)
ericniebler/range-v3 - C++20 ranges 库就是受到他启发(完全是头文件组成)
fmtlib/fmt - 格式化库,提供 std::format 的替代品(需要 -DFMT_HEADER_ONLY)
gabime/spdlog - 能适配控制台,安卓等多后端的日志库(和 fmt 冲突!)

只需要把他们的 include 目录或头文件下载下来,然后 include_directories(spdlog/include) 即可。
缺点:函数直接实现在头文件里,没有提前编译,从而需要重复编译同样内容,编译时间长。

第三方库 - 作为子模块引入

第二友好的方式则是作为 CMake 子模块引入,也就是通过 add_subdirectory。
方法就是把那个项目(以fmt为例)的源码放到你工程的根目录:
这些库能够很好地支持作为子模块引入:

fmtlib/fmt - 格式化库,提供 std::format 的替代品
gabime/spdlog - 能适配控制台,安卓等多后端的日志库
ericniebler/range-v3 - C++20 ranges 库就是受到他启发
g-truc/glm - 模仿 GLSL 语法的数学矢量/矩阵库
abseil/abseil-cpp - 旨在补充标准库没有的常用功能
bombela/backward-cpp - 实现了 C++ 的堆栈回溯便于调试
google/googletest - 谷歌单元测试框架
google/benchmark - 谷歌性能评估框架
glfw/glfw - OpenGL 窗口和上下文管理
libigl/libigl - 各种图形学算法大合集

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/57418.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业邮箱费用详解!了解企业邮箱的费用及其相关信息

对于需要可靠的邮箱平台的企业来说&#xff0c;企业邮箱可能是最好的解决方案。有许多供应商提供企业邮箱服务&#xff0c;他们通常每月都有相应的费用。 在考虑企业邮箱的成本时&#xff0c;有几件事要记住。首先&#xff0c;您应该考虑使用邮箱服务的用户数量&#xff0c;因为…

基于Web智慧森林防火GIS监测预警可视化系统

森林火灾是森林最危险的敌人&#xff0c;也是林业最可怕的灾害&#xff0c;它会给森林带来毁灭性的后果。 建设背景 森林火灾&#xff0c;重在预防。随着现代技术的快速发展&#xff0c;数字化森林监控已成为及早发觉&#xff0c;排除森林火灾隐情的必要手段。充分利用现代科…

二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)

文章目录 算法模板Dijkstra题目代码模板朴素dijkstra算法堆优化版dijkstra 树与图的存储(1) 邻接矩阵&#xff1a;(2) 邻接表&#xff1a;关于e[],ne[],h[]的理解 关于堆的原理与操作 模板题Dijkstra求最短路 I原题链接题目思路题解 Dijkstra求最短路 II原题链接题目思路题解 1…

搭建自己的Git服务器

环境 服务端&#xff1a;Ubuntu 22.04 客户端&#xff1a;Win11_x64 前提条件&#xff1a;需要确保在Windows机器上能够ping通Ubuntu服务器, 并且服务端与客户端均已安装了Git软件 服务端上的配置操作 以Ubuntu服务器作为Git服务端的运行环境&#xff0c;并方便后期免密推…

aws的EC2云服务器自己操作记录

亚马逊官网有免费试用1年的服务器 以下内容参考 1. 启动生成实例 1.1 创建实例时需要生成 使用的默认的 Debian 和 一个.pem后缀的秘钥 1.2 网上下一个Mobaxterm ,实例名是公有 IPv4 DNS 地址 ,使用SSH连接,登录名是admin 1.3 登录进去后 输入用户名 admin 后进去,sudo …

聊聊我的故事-悲惨的童年

目录 前言一、介绍二、17年回顾1.出生2.上幼儿园3.上小学4.上初中 高中总结 前言 本人是06年生的&#xff0c;快18了&#xff0c; 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、介绍 本人已经17了&#xff0c;在这17年过的很悲惨&#xff0c;也…

QT--day4(定时器事件、鼠标事件、键盘事件、绘制事件、实现画板、QT实现TCP服务器)

QT实现tcpf服务器代码&#xff1a;&#xff08;源文件&#xff09; #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间server new QTc…

命令模式——请求发送者与接收者解耦

1、简介 1.1、概述 在软件开发中&#xff0c;经常需要向某些对象发送请求&#xff08;调用其中的某个或某些方法&#xff09;&#xff0c;但是并不知道请求的接收者是谁&#xff0c;也不知道被请求的操作是哪个。此时&#xff0c;特别希望能够以一种松耦合的方式来设计软件&a…

使用 GitHub Copilot 进行 Prompt Engineering 的初学者指南(译)

文章目录 什么是 GitHub Copilot ?GitHub Copilot 可以自己编码吗&#xff1f;GitHub Copilot 的底层是如何工作的&#xff1f;什么是 prompt engineering?这是 prompt engineering 的另一个例子 使用 GitHub Copilot 进行 prompt engineering 的最佳实践提供高级上下文&…

0139 数据链路层1

目录 3.数据链路层 3.1数据链路层的功能 3.2组帧 3.3差错控制 3.4流量控制与可靠传输机制 3.5介质访问控制 部分习题 3.数据链路层 3.1数据链路层的功能 3.2组帧 3.3差错控制 3.4流量控制与可靠传输机制 3.5介质访问控制 部分习题 1.数据链路层协议的功能不包括&…

【雕爷学编程】MicroPython动手做(30)——物联网之Blynk 2

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…

docker删除容器(步骤详解)

要在Docker中删除容器&#xff0c;需要使用命令docker rm。 下面是详细步骤&#xff1a; 1. 首先&#xff0c;使用docker ps命令查看当前正在运行的容器。这个命令会列出所有正在运行的容器的ID、名称、状态等信息。 如果没有正在运行的容器可以通过docker ps -a 查看当前所…

数据结构 | Radix Tree 树

什么是基数树&#xff1f; 基数树是一种多叉搜索树&#xff0c;数据位于叶子节点上&#xff0c;每一个节点有固定的2^n个子节点&#xff08;n为划分的基大小&#xff0c;当n为1时&#xff0c;为二叉树&#xff09;。 什么为划分的基&#xff1f; 以一个64位的长整型为例&#x…

Day08-作业(MySQLMybatis入门)

作业1&#xff1a;多表查询 数据准备&#xff1a; 重新创建一个数据库 db03_homework 执行如下脚本&#xff0c;创建表结构&#xff0c;导入测试数据 -- 部门管理 create table tb_dept(id int unsigned primary key auto_increment comment 主键ID,name varchar(10) not n…

ubuntu git操作记录设置ssh key

用到的命令&#xff1a; 安装git sudo apt-get install git配置git用户和邮箱 git config --global user.name “用户名” git config --global user.email “邮箱地址”安装ssh sudo apt-get install ssh然后查看安装状态&#xff1a; ps -e | grep sshd4. 查看有无ssh k…

通过案例实战详解elasticsearch自定义打分function_score的使用

前言 elasticsearch给我们提供了很强大的搜索功能&#xff0c;但是有时候仅仅只用相关度打分是不够的&#xff0c;所以elasticsearch给我们提供了自定义打分函数function_score&#xff0c;本文结合简单案例详解function_score的使用方法&#xff0c;关于function-score-query…

【Spring】深究SpringBoot自动装配原理

文章目录 前言1、main入口2、SpringBootApplication3、EnableAutoConfiguration4、AutoConfigurationImportSelector4.1、selectImports()4.2、getAutoConfigurationEntry()4.3、getCandidateConfigurations()4.4、loadFactoryNames() 5、META-INF/spring.factories6、总结 前言…

Nginx实现反向代理和负载均衡

Nginx安装 本文章主要介绍下&#xff0c;如何使用Nginx来实现反向代理和负载均衡&#xff0c;Nginx安装和基础知识&#xff0c;可参考我的这篇文章 Nginx安装。 Nginx实现反向代理 实现反向代理需要准备两台Nginx服务器。一台Nginx服务器A&#xff0c;ip为 192.168.206.140&…

浅谈机器视觉

目录 1.什么是机器视觉 2.学习机器视觉需要掌握的知识 3.机器视觉的由来 4.机器视觉带来的福利 1.什么是机器视觉 机器视觉&#xff08;Computer Vision&#xff09;是人工智能领域中的一个分支&#xff0c;旨在通过模仿人类的视觉系统&#xff0c;使计算机能够理解和解释图…

【Leetcode】(自食用)找到消失的数字

step by step. 题目&#xff1a; 给你一个含 n 个整数的数组 nums &#xff0c;其中 nums[i] 在区间 [1, n] 内。请你找出所有在 [1, n] 范围内但没有出现在 nums 中的数字&#xff0c;并以数组的形式返回结果。 示例 1&#xff1a; 输入&#xff1a;nums [4,3,2,7,8,2,3,1] 输…