云计算革新:以太网 Scale-UP 网络为 GPU 加速赋能

 

谈谈基于以太网的GPU Scale-UP网络

   

Intel Gaudi-3 采用 RoCE 互联技术,促进了 Scale-UP 解决方案。业界专家 Jim Keller 倡导以太网替代 NVLink。Tenstorrent 成功应用以太网实现片上网络互联。RoCE 和以太网已成为互联解决方案的新兴趋势,为高性能计算提供了强大且高效的连接选项。

要实现以太网替代 NVLink,需要对 GPU 架构进行全面修改,本质上等同于将 HBM 连接到以太网上并实现一系列通信优化。全球仅有少数公司掌握这项技术,包括针对计算需求的 In-Network-Computing 优化,如 SHARP。

博通打造NVLink竞品,需解决关键挑战:
- 数据传输速度和延迟优化
- 产品互联性和兼容性提升
- 生态系统发展和合作伙伴支持

链接延迟是不可避免的,源于高吞吐量高速 Serdes FEC 和超大型互连。单纯修改包协议或采用 HPC 以太网并不能解决此问题。

2.传输的语义是什么?做网络的这群人大概只懂个SEND/RECV。举个例子,UEC定义的Reliable Unordered Delivery for Idempotent operations(RUDI)其实就是一个典型的技术上的错误,一方面它满足了交换律和幂等律,但是针对一些算子,例如Reduction的加法如何实现幂等?显然这群人也没做过,还有针对NVLink上那种细颗粒度的访存,基于结合律的优化也是不支持的。更一般来说,它必须演进到Semi-Lattice的语义才行。

优化 NVLINK 上的内存池化,解决计算密集型算子(如 KV Cache)的时间/空间权衡问题,从而增强计算能力。

4.动态路由和拥塞控制能力1:1无收敛的Lossless组网对于万卡集群通过一些hardcode的调优没什么太大的问题,而对于十万卡和百万卡规模集群来看,甚至需要RDMA进行长传,这些问题目前来看没有一个商业厂商能解决的。

考虑到超大规模模型训练的一系列需求,把HBM直接挂载在以太网上并实现了一系列集合通信卸载的,放眼全球现在也就只有少数几个团队干过,前三个问题我是在四年前做NetDAM项目时就已经完全解决干净了,第四个去年也在某个云的团队一起解决干净了。下面我们将介绍一些Gaudi3/Maia100/TPU等多个厂商的互联,然后再分析一下NVLink的演进,最后再来谈谈如何能够真正地解决这些问题 at Scale

1. 当前ScaleUP互联方案概述

1.1 Intel Gaudi3

Gaudi的Die架构采用24个RoCE 200Gbps链路,21个用于内部全互联,3个用于外部连接,形成超大规模组网拓扑。每个边缘交换机的交换容量为25.6T。Intel WhitePaper值得深入研究,解决其提出的问题。

1.1.1 拥塞控制

Intel 采用 Selective ACK 机制取代 PFC,并使用 SWIFT 作为拥塞控制算法,避免 ECN。这种方法类似于 Google Falcon 在 Intel IPU 上的 Reliable Transport Engine,为数据中心网络提供了可靠、高效的传输。

1.1.2 多路径和In-Network Reduction

Intel 宣称支持 Packet Spraying,但使用博通交换机而非自有 Tofino。In-Network Reduction 兼容 FP8/BF16 等,而 Operator 仅支持求和、最小值和最大值。UEC 的 In-Network-Computing (INC) 工作组已明确此配置。

1.2 Microsoft Maia100

没有太多的信息,只有4800Gbps单芯片的带宽,然后单个服务器机框4张Maia100,整个机柜8个服务器构成一个32卡的集群。e7565a141158ed6e801440e4d1e8e49f.jpeg放大交换机和互联的线缆来看,有三个交换机,每个服务器有24个400Gbps网络接口,网口间有回环的连接线(图中黑色),以及对外互联线(紫色)。52e8916fea5aae8fee3dd70228ecd6c3.jpeg也就是说很有可能构成如下的拓扑:12b2378a12cd7ced7929d72f7ab5ad64.jpeg即在主板内部构成一个口字形的互联,然后在X方向构成一个环,而在Y方向则是分别构成三个平面连接到三个交换机。交换机上行进行机柜间的Scale-Out连接,每个机柜每个平面总共有32个400G接口, 再加上1:1收敛,上行交换机链路算在一起正好一个25.6T的交换机,这样搭几层扩展理论应该可行,算是一个Scale-Up和Scale-Out两张网络合并的代表。

至于协议对于Torus Ring来看,简单的点到点RoCE应该问题不大,互联到Scale-Out交换机时就需要多路径的能力了。缺点是延迟可能有点大,不过这类自定义的芯片如果不是和CUDA那样走SIMT,而是走脉动阵列的方式,延迟也不是太大的问题。另外Torus整个组就4块,集合通信延迟影响也不大。但是个人觉得这东西可能还是用于做推理为主的,一般CSP都会先做一块推理用的芯片,再做训练的。另外两家CSP也有明确的训练推理区分AWS Trainium/Inferentia, Google也是V5p/V5e。

1.3 Google TPU

TPU互联大家已经很清楚了,Torus Ring的拓扑结构和光交换机来做链路切换。6bd466fe2b6727d09ef1de83a80d8580.jpeg2c3f48f7237ccbdb99014410d69e83b2.jpegOCS有两个目的,一个是按照售卖的规模进行动态切分,例如TPUv5p 单芯片支持4800Gbps的ICI(Inter-Chip Interconnect)连接,拓扑为3D-Torus,整个集群8960块TPUv5p 最大售卖规模为6144块构成一个3D-Torus。d4b18c7ffd41bdfda6fed79f8ac101f6.jpeg通过OCS可以切分这些接口进行不同尺度的售卖, 另一个是针对MoE这些AlltoAll的通信做扩展bisection 带宽的优化。f65b056fe15d0c65c00fd1f453add8db.jpeg还有一个是容错,这是3D Torus拓扑必须要考虑的一个问题,有一些更新是这周NSDI‘24 讲到一个《Resiliency at Scale: Managing Google’s TPUv4 Machine Learning Supercomputer》[2] 后面我们将专门介绍。另一方面Google还支持通过数据中心网络扩展两个Pod构建Multislice的训练,Pod间做DP并行。d8b99aa3ea15e698cd0ce0ed674a77d3.jpeg796fba852b40fed472a86025cbdaf6b4.jpeg

1.4 AWS Trainium

Trainium 架构由 16 片组成一个小型簇集,采用 2D Torus Ring 结构进行片间互连。这种结构确保了高速、低延迟的数据传输,为 AI 和机器学习模型的训练提供了卓越的性能。

1.5 Tesla Dojo

Tesla Transport Protocol(TTP)由 Tesla 开发,简化了芯片内部和外部通信。它整合了 Wafer/NOC 和以太网扩展,实现了统一通信,提升了效率和性能。

54a4c65a1fd04fe0d874d300fa2630ff.jpeg

它通过台积电的System-on-Wafer将25个D1计算单元封装在一个晶圆上, 并采用5x5的方式构建2D Mesh网络互联所有的计算单元, 单个晶圆构成一个Tile.每个Tile有40个I/O Die。2742627e564ff73606234a77ee525f97.jpegTile之间采用9TB/s互联。724f2e0c11eb8c4bdf1172a42aaea3f5.jpeg可以通过片上网络路由绕开失效的D1核或者Tile。92acb763c4d4a55e68961869b9e4fe31.jpeg

对外Scale-Out的以太网有一块DIP,每个D1计算引擎有自己的SRAM, 而其它内存放置在带HBM的Dojo接口卡(DIP)上。f5bd2549af36398aa396e737b0327826.jpeg每个网卡通过顶部的900GB/s特殊总线TTP(Tesla Transport Protocol)连接到Dojo的I/O Die上, 正好对应800GB HBM的带宽,  每个I/O Die可以连接5个Dojo接口卡(DIP)。

001ff3b669c5b9690a9be9b3d38bf794.jpeg

由于内部通信为一个2D Mesh网络, 长距离通信代价很大, 针对片上路由做了一些特殊的设计。bc8bf8392e5d6cbf9f3f0f3ed6b5636a.jpeg路由在片上提供多路径,并且不保序, 同时针对大范围长路径的通信, 它很巧妙的利用Dojo接口卡构建了一个400Gbps的以太网TTPoE总线来做shortcut。ed77895ffb3e8c9ddaee2f9e3ae6df69.jpegDojo通过System-on-wafer的方式构建了基于晶圆尺度的高密度的片上网络, 同时通过私有的片间高速短距离总线构建了9TB/s的wafer间的通信网络. 然后将I/O和内存整合在DIP卡上,提供每卡900GB/s连接到晶圆片上网络的能力,构建了一个超大规模的2D Mesh网络, 但是考虑到片上网络通信距离过长带来的拥塞控制, 又设计了基于DIP卡的400Gbps逃生通道,通过片外的以太网交换机送到目的晶圆上。

1.6 Tenstorrent

Tenstorrent 的片上网络采用简单有效的以太网设计,由 Tensor+ 控制头组成以太网报文,支持多种通信语义。网络结构划分为阶段,每个阶段的指令数和带宽可估计,从而简化映射到核上的约束。
该2D Mesh 结构可扩展至 40960 个核心的大规模互联,提供高效且可扩展的片间通信。

2. Scale-UP的技术需求

2.1 拓扑选择

我们可以注意到在ScaleUp网络选择中,Nvidia当前是1:1收敛的FatTree构建,而其它几家基本上都是Torus Ring或者2D Mesh,而Nvidia后续会演进到DragonFly。5b08c304d692ee996a0a77d02c854f78.jpeg背后的逻辑我们可以在hammingMesh的论文中看到的选择如下:7033ca51058af67f4ce29e8564dbb6f9.jpeg可以看到对于Allreduce带宽来看,Torus是最便宜的,性能也能够基本跑到峰值。但是针对MoE这类模型的AlltoAll就要考察bisection带宽了,而DragonFly无论是在布线复杂度还是GlobBW以及网络直径上都还不错,所以明白了Bill Dally的选择了吧?

2.2 动态路由和可靠传输

当网络规模扩展至十万卡时,现有的流量工程解决方案存在局限性。单板级优化,如RoCE缺陷修复、Adaptive Routing和Packet Spraying,只能部分解决万卡规模问题。
对于超大规模网络,需要同时解决流量工程和亲和性控制的难题。

基于元数据的静态路由,管控平面调度和多轨道技术都可以作为解决方案的组成部分。通过综合应用这些技术,可以有效管理超大规模网络中的海量流量,确保网络性能和可靠性。

算法应对突发流量十分困难。令人担忧的是,人们往往忽视突发流量的根源,执着于通过测试交换机缓冲区来抑制它。一些人甚至诉诸确定性网络和傅立叶分析,这显然是徒劳的。


在工业界,优化调度仍面临挑战,取决于其他厂商的洞察力。
谷歌的研究表明,系统失效和弹性售卖会导致数据碎片,从而增加调度难度。
ICI内部路由解决方案与OCS交换机协作,提供完善的解决方案。
这篇论文深入披露了ICI的架构,包括物理层、可靠传输层、路由层和事务层,为理解该解决方案提供详细的技术见解。

以太网的路由层对于支持 ScaleUP 至关重要,因为它提供 DragonFly 和失效链路切换能力,确保以太网在复杂网络环境下保持高可用性。

3. Scale UP延迟重要么?

GPU延迟隐藏优化
GPU延迟隐藏通过以下方式实现:
* NVLink:内存语义,提供高带宽、低延迟。
* RDMA:消息语义,主要用于异构计算,延迟会更高。
GPU作为吞吐量优化的处理器,追求低延迟会导致实现问题。NVLink的内存语义使其具有较低延迟,而RDMA的消息语义和异构计算实现导致延迟较高。

3.1 RDMA实现的缺陷

RDMA相较NVLink延迟高的问题因CPU限制而起。NVIDIA引入GDA-KI技术,有效降低访存延迟,使得访问延迟变得更加容易隐藏。

3.2 细粒度的内存访问

NVLink 的细粒度访问对传输效率和延迟至关重要。利用以太网 RDMA 替换 NVLink 时,需要采用 HPC 以太网来支持较长的数据包。
此外,为实现 RDMA 消息的内部半格语义,需要遵循 NetDAM 中提出的解决方案。通过满足这些要求,可以有效弥补以太网 RDMA 在替换 NVLink 方面的不足。

  1. 交换律可以保证数据可以用UnOrder方式提交。
  2. 幂等性确保丢包重传不会导致重复处理。但在涉及副作用的加法操作(如 Reduce)时,需要采用事务或数据幂等性来处理。
  3. 结合律针对细粒度的内存访问,通过结合律编排,提升传输效率。

对于访存的需求,在主机内的协议如下:b1ea783e8dc3a8c1ad03078d01ca2899.jpeg通常是一个FLIT的大小,而在这个基础上要支持超大规模的ScaleUP互联和支撑可靠性又要加一些路由头,还有以太网头,还有如果超大规模集群要多租户隔离还有VPC头,这些其实支持起来都没有太大问题的,因为当你考虑到了 结合律即可。但是UEC似乎完全没理解到,提供了RUDI的支持交换律和幂等律支持了,结合律忘了,真是一个失误。而英伟达针对这个问题怎么解的呢?结合律编码:2ddee46de669f321f76ea97c3b873e20.jpegd5e4a10136ebc51440ed979d7f8b3339.jpeg最终细颗粒度访存的问题解决了。34d4ce05cf8a660f7d885cb67a67de01.jpeg下一代的NVLink一定会走到这条路里面来Infiniband和NVLink这两张ScaleOut和ScaleUP网络一定会融合。

3.2 ScaleUP的内存池化

大模型面临 HBM 容量不足的挑战。英伟达通过 Grace 和 NVLink C2C 扩展解决了该问题,采用池化内存以支持 ScaleUP 网络。值得关注的是,英伟达正在探索其他方式来应对这一挑战,如论文中所展示的。

3. 结论

任何一家公司如果想做Ethernet的Scale UP,需要考虑以下大量的问题:

  1. 通过优化访问内存协议并利用 GPU 的缓存,FinePack 可显著缩短延迟。其创新的 Message 语义和缓存处理机制能有效隐藏延迟,提升整体性能。
  2. ScaleUP 网络的动态路由和租户隔离功能至关重要,优化路由以避免碎片问题,特别是当资源受链路故障影响时。
  3. RDMA语义不完善,且直接复制SHARP存在隐患。为实现幂等,需要完善Semi-Lattice语义,支持有副作用操作的幂等实现。
  4. Fabric的多路径转发和拥塞控制,提升整个Fabric利用率;
  5. 大规模内存池化。

NetDAM研究突破性地实现了以太网ScaleUP直连HBM,其消息编码策略与Jim Keller的成就一致,但基于不同出发点。此外,大规模池化和原生In-Network-Computing/Programming加速进一步增强了其功能。通过与多个团队合作,引入了先进的拥塞控制和多路径转发,完善了该方案。NetDAM的论文为以太网在HPC领域应用提供了宝贵的见解,值得深入研读。

探索英特尔® 高迪 3 AI 加速器,实现令人难以置信的 AI 性能。
这款业界领先的加速器提供:
- 高达 40 倍的训练性能提升
- 高达 10 倍的推理延迟降低
- 支持广泛的 AI 框架和模型
通过高迪 3,解锁前所未有的 AI 创新,推动您的业务实现新高度。


Google TPUv4:弹性超算
Google TPUv4 超级计算机是业界首屈一指的机器学习平台,拥有惊人的规模:
* 5,760 个 TPU 单元
* 600 万个 AI 模型训练
* 每天处理 200 PB 数据
该平台采用了创新技术,实现了前所未有的弹性:
* 弹性部署:按需部署 TPU,无需预先配置
* 故障隔离:将工作负载隔离到独立的 TPU,确保可靠性
* 动态弹性:自动扩展和缩小 TPU 容量,优化利用率
TPUv4 的弹性优势使 Google 能够高效管理其庞大的 ML 工作负载,加速模型训练并推动 AI 创新。


 

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/573346.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端H5动态背景登录页面(下)

最近正好有点儿时间,把之前没整理完的前端动态背景登录页面给整理一下!这是之前的连接前端H5动态背景登录页面(上),这主要是两个登陆页面,一个彩色气泡,一个动态云朵,感兴趣的可以点…

关爱通丨从AIGC到硅基人同事:人工智能迭代重塑HR管理策略

2024年,一股创新的浪潮悄无声息地席卷了全球,推动了人工智能领域的重大突破。Sora视频模型的惊艳发布,成为了这一创新浪潮的标志性事件。 Sora这个名字源自日语中的“空”(そら sora),象征着天空的无限广阔…

机器学习作业3____决策树(CART算法)

目录 一、简介 二、具体步骤 样例: 三、代码 四、结果 五、问题与解决 一、简介 CART(Classification and Regression Trees)是一种常用的决策树算法,可用于分类和回归任务。这个算法由Breiman等人于1984年提出,它…

sorensen索伦森电源维修XRF系列程控电源XRF600-4

AMETEK直流电源产品有两种类型:固定量程类型和自动量程类型。 固定量程电源是经济型的,输出范围为传统的矩形范围。 自动量程电源,在满输出功率的基础上,扩展了电流和电压的输出范围,使其能够满足更广泛的测试需求&am…

自由场、半自由场、扩散场

按声场性质可以将声场分为三类:自由声场、半自由声场、扩散声场 分别对应着全消声室,半消声室,混响室 自由声场: 声源在均匀、各向同性媒介中传播时,不计边界影响的声场,此时声场中只有直达声没有反射声。…

数据库系统原理实验报告4 | 数据完整性

整理自博主本科《数据库系统原理》专业课自己完成的实验报告,以便各位学习数据库系统概论的小伙伴们参考、学习。 专业课本: ———— 本次实验使用到的图形化工具:Heidisql 目录 一、实验目的 二、实验内容 1、建表 2、对1题中创建的Stud…

MySQL--mysql的安装(压缩包安装保姆级教程)

官网下载:www.mysql.com MySQL :: Download MySQL Community Server (Archived Versions) 1.MySQL下载流程: 第一步:点击download, 下滑找到MySQL community(gpl)Downloads>> 第二步:点…

问题-MySQL将较大的SQL文件导入MySQL

迁移数据的时候,我们有时候会用sqlyog等数据库工具导入到新数据库。可能插入的SQL语句太大,出现导入一半失败的情况。明明代码没错,这让人摸不着头脑。 对于大文件导入,有几种方法: 方法1:使用命令行&…

这几种MBTI,活该做项目经理!

最近公司群里发了一个性格测试(MBTI),让根据大家测出来的性格,适当挖掘一下自身潜力。 当对照性格解析时,才发现公司里真是卧虎藏龙,而且每个人测出来的性格和平时表现出的自己都非常贴合。 MBTI性格测试…

2024年Q1企业邮箱安全性研究报告:钓鱼邮件同比增长59.9%

4月23日,Coremail邮件安全联合北京中睿天下信息技术有限公司发布《2024年第一季度企业邮箱安全性研究报告》。对当前企业邮箱的应用状况和安全风险进行了分析。 1、垃圾邮件持续增长 根据Coremail邮件安全人工智能实验室最新数据显示,2024年第一季度&am…

Postman - 设置变量

场景: 比如你接口都有权限,访问需要每调一个接口都手动放token的值,这个时候就可以搞个全局的变量,只设置一次就可以了 1、设置变量 Environments -> Globals - > 设置key 、value 2、使用变量 {{你得变量名-key}} 3…

电动车DC-DC80V降33V/12V 3A大功率同步降压芯片_AH1008

AH1008是一款专为电动车设计的同步降压芯片,TEL:186*4884*3702*能够将输入电压从80V稳定地降至33V或12V,并提供最大3A的输出电流。该芯片采用了先进的同步降压转换技术,有效降低了能量损耗,提升了转换效率,…

做抖音小店,“自然流量”和“达人带货”,选择哪个更香?

大家好,我是电商笨笨熊 做抖音小店,关于选择自然流还是达人带货,从推出时就一直争吵到现在; 有人觉得自然流不需要佣金,一次性带来的爆单量很大; 有人觉得达人带货细水长流,虽然需要佣金&…

【大语言模型LLM】-基础语言模型和指令微调的语言模型

🔥博客主页:西瓜WiFi 🎥系列专栏:《大语言模型》 很多非常有趣的模型,值得收藏,满足大家的收集癖! 如果觉得有用,请三连👍⭐❤️,谢谢! 长期不…

干货教程【AI篇】| 真人照片转动漫AI工具分享

今天给大家分享一个真人照片转动漫的工具。用真是拍摄的照片生成动漫/漫画/手绘/卡通图的工具。 需要这个工具的同学可以关注【文章底部公众号】,回复关键词【zpdm】即可获取本文所讲工具。 首先我们将下载下来的压缩包解压 直接双击红框内的文件就可以运行了。启…

ThinkPad E14 Gen 4,R14 Gen 4,E15 Gen 4(21E3,21E4,21E5,21E6,21E7)原厂Win11系统恢复镜像下载

lenovo联想ThinkPad笔记本电脑原装出厂Windows11系统安装包,恢复出厂开箱状态一模一样 适用型号:ThinkPad E14 Gen 4,ThinkPad R14 Gen 4,ThinkPad E15 Gen 4 (21E3,21E4,21E5,21E6,21E7) 链接:https://pan.baidu.com/s/1QRHlg2yT_RFQ81Tg…

解决在 Python 数据分析中遇到的 Matplotlib 字体警告问题

当在 Python 数据分析中遇到类似以下警告时: D:\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.py:211: RuntimeWarning: Glyph 24037 missing from current font.font.set_text(s, 0.0, flagsflags) D:\anaconda3\lib\site-packages\matplotlib\ba…

【前端】3. CSS【万字长文】

CSS 是什么 层叠样式表 (Cascading Style Sheets). CSS 能够对网页中元素位置的排版进行像素级精确控制, 实现美化页面的效果. 能够做到页面的样式和结构分离. CSS 就是 “东方四大邪术” 之化妆术. 基本语法规范 选择器 {一条/N条声明} 选择器决定针对谁修改 (找谁)声明决…

XOCIETY在Sui构建玩家的天堂

Sui惊人的速度和创新的NFT技术使其成为游戏的绝佳环境,而没有什么比XOCIETY更能证明这一点了。XOCIETY是一款新的流行射击游戏,具有RPG元素,将于今年晚些时候登陆Sui网络。这款由NDUS Interactive制作的游戏在基于虚幻引擎5构建的丰富环境中提…

C. Left and Right Houses

本题链接:Problem - C - Codeforces 题目: 样例: 输入 7 3 101 6 010111 6 011001 3 000 3 110 3 001 4 1100输出 2 3 2 3 0 1 0 思路: 根据题目意思。 寻找一条道路进行分割该字符串,设该道路分割位置为 i &#x…