如何解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题......

深入探讨了高光谱遥感数据处理技术,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。此外,通过Python实践练习,课程帮助学员巩固所学知识,使其得以深入理解与实践。

如何解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题...... (qq.com)

目标:

1.全套的高光谱数据处理方法和应用案例(包含python源码)

2.高光谱与机器学习结合的系统化解决方案

3.最新的技术突破讲解和复现代码

4.科研项目实践和学习方法的专题分享

5.高光谱数据预处理-机器学习-深度学习-图像分类-参数回归等12个专题练习

高光谱遥感信息对于我们认识世界具有重要意义。尽管大部分物质在人眼中看似无异,然而高光谱遥感的观察下,它们呈现出独特的"光谱特征"。这种能够窥见事物的"本质"能力具备着革命性的潜能,对精准农业、地球观测、艺术分析和医学等领域带来巨大的影响。通过通俗易懂的课程,我们希望能够让您更加深入地了解和掌握高光谱的知识与技术。愿您在学习的道路上获得愉悦,并汲取丰盛的收获!

第一章:高光谱数据处理基础

第一课:高光谱遥感基本概念

01)高光谱遥感

02)光的波长

03)光谱分辨率

04)高光谱遥感的历史和发展

图片

第二课:高光谱传感器与数据获取

01)高光谱遥感成像原理与传感器

02)卫星高光谱数据获取

03)机载(无人机)高光谱数据获取

04)地面光谱数据获取

05)构建光谱库

图片

第三课:高光谱数据预处理

01)图像的物理意义

02)数字量化图像(DN值)

03)辐射亮度数据

04)反射率

05)辐射定标

06)大气校正

练习1:

资源02D高光谱卫星数据辐射定标与大气校正

图片

第四课:高光谱分析

01)光谱特征分析

02)高光谱图像分类

03)高光谱地物识别

04)高光谱混合像元分解

练习2

(1)使用DISPEC 对光谱库数据进行光谱吸收特征分析

(2)使用ENVI的沙漏程序对资源02D高光谱卫星数据进行混合像元分解

图片

第二章、高光谱开发基础(Python)

第一课:Python编程介绍

01)Python简介

02)变量和数据类型

03)控制结构

04)功能和模块

05)文件、包、环境

练习3

(1)python基础语法练习

(2)文件读写练习

(3)包的创建导入练习

(4)numpy\pandas 练习 

图片

第二课:Python空间数据处理

01)空间数据Python处理介绍

02)矢量数据处理

03)栅格数据处理

练习4

(1)python矢量数据处理练习

(2)python栅格处理练习

图片

第三课:python 高光谱数据处理

01)数据读取

02)数据预处理

辐射定标、6S大气校正

03)光谱特征提取

吸收特征提取

04)混合像元分解

PPI、NFINDER端元光谱提取

UCLS、NNLS、FCLS最小二乘端元丰度计算

练习5

(1)高光谱数据读取

(2)高光谱数据预处理

(3)光谱特征提取

(4)混合像元分解

图片

第三章、高光谱机器学习技术(python)

第一课:机器学习概述与python实践

01)机器学习与sciki learn 介绍

02)数据和算法选择

03)通用学习流程

04)数据准备

05)模型性能评估

06)机器学习模型

练习6

机器学习sciki learn练习

图片

第二课:深度学习概述与python实践

01)深度学习概述

02)深度学习框架

03)pytorch开发基础-张量

04)pytorch开发基础-神经网络

05)卷积神经网络

06)手写数据识别

07)图像识别

练习7

(1)深度学习pytorch基础练习

(2)手写数字识别与图像分类练习

图片

第三课:高光谱深度学习机器学习实践

01)基于scklearn高光谱机器学习

02)使用自己的数据进行机器学习(envi标注数据)

03) 高光谱深度学习框架

04) 高光谱卷积网络构建

05)使用自己的数据进行深度学习

练习8

(1)高光谱数据分类练习

(2)高光谱深度学习练习

(3)使用自己数据测试

图片

第四章、典型案例操作实践

第一课:矿物填图案例

01)岩矿光谱机理

02)基于光谱特征的分析方法

03)混合像元分解的分析方法

练习9

(1)矿物高光谱特征分析习

(2)基于混合像元分解矿物填图

图片

第二课:农业应用案例

01)植被光谱机理

02)农作物病虫害分类

03)农作物分类深度学习实践

练习10

(1)农作物病虫害机器学习分类

(2)农作物分类深度学习练习

图片

第三课:土壤质量评估案例

01)土壤光谱机理

02)土壤质量调查

03)土壤含水量光谱评估方法

04)土壤有机质含量评估与制图

练习11

(1)基于9种机器学习模型的土壤水分含量回归

(2)土壤有机质含量回归与制图

图片

第四课:木材含水率评估案例

01)高光谱无损检测

02)木材无损检测

03)高光谱木材含水量评估

练习12

木材含水量评估和制图

图片

关注【科研技术平台公众号】获取更多资源 

如何解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题...... (qq.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/572819.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Meta-Llama-3-8B-Instruct本地推理

Meta-Llama-3-8B-Instruct 本地推理 基础环境信息(wsl2安装Ubuntu22.04 miniconda) 使用miniconda搭建环境 (base) :~$ conda create --name pytorch212 python3.10 Retrieving notices: ...working... done Channels:- defaults Platform: linux-64 C…

EasyRecovery数据恢复软件2025破解版安装包下载

EasyRecovery数据恢复软件的主要功能及使用教程。coco玛奇朵可以提供一个概要和简化的教程,以便你了解其基本内容和操作步骤。 EasyRecovery绿色破解下载网盘链接: https://pan.baidu.com/s/1_6NmcOh_Jmc-DGc4TJD-Mg?pwddq4w 提取码: dq4w 复制这段内容后打开百度…

ABAP 第三代增强(BADI)--BADI旧方法

文章目录 第三代增强(BADI)--BADI旧方法需求分析确定BADI使用SE18查看BADIBADI的创建实施逻辑代码编写测试注意事项 第三代增强(BADI)–BADI旧方法 第三代增强BADI:全称是(Business Add-Ins) …

[卷积神经网络]YoloV9

一、概述 代码路径为: YoloV9https://github.com/WongKinYiu/yolov9 YoloV9的作者在论文中指出:现在的深度学习方法大多都在寻找一个合适的目标函数,但实际上输入数据在进行特征提取和空间变换的时候会丢失大量信息。针对这个问题&#xff…

MySQL数据类型:字符串类型详解

MySQL数据类型:字符串类型详解 在MySQL数据库中,字符串数据类型用于存储各种文本信息。这些数据类型主要包括CHAR、VARCHAR、TEXT和BLOB等。 CHAR与VARCHAR CHAR CHAR类型用于存储固定长度的字符串。它的长度在创建表时就已确定,长度范围…

书生·浦语大模型实战营之Llama 3 高效部署实践(LMDeploy 版)

书生浦语大模型实战营之Llama 3 高效部署实践(LMDeploy 版) 环境,模型准备LMDeploy chatTurmind和Transformer的速度对比LMDeploy模型量化(lite)LMDeploy服务(serve) 环境,模型准备 InternStudio 可以直接使用 studio-conda -t …

查找总价格为目标值的两个商品 ---- 双指针

题目链接 题目: 分析: 解法一: 暴力解法, 将每两个的和都算出来, 判断是否为目标值解法二: 数组中的数是按升序排序的, 我们可以定义左右指针 如果和小于目标值, 则应该让和变大, 所以左指针右移如果和大于目标值, 则应该让和变小, 所以右指针左移 思路: 定义left 0, righ…

使用Krukal算法解决图的最小生成树问题

Kruskal 算法 Kruskal算法是一种用于寻找连通图中最小生成树的算法。最小生成树是一个包含图中所有顶点的树,且边权重之和最小。Kruskal算法是一种贪心算法,它的基本思想是:每次选择边权重最小的边来扩展树,直到树包含所有的顶点…

一周学会Django5 Python Web开发-Django5 ORM执行SQL语句

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计49条视频,包括:2024版 Django5 Python we…

Spring 注解开发详解

1. 注解驱动入门案例介绍 1.1 需求描述 1.需求:实现保存一条数据到数据库。 2.表结构:create table account(id int primary key auto_increment,name varchar(50),money double(7,2)); 3.要求:使用spring框架中的JdbcTemplate和DriverMana…

Python 使用相对路径读取文件失败

python open一个问及那时使用绝对路径可以,但是使用相对路径时报错,找不到指定文件 解决步骤如下: 添加Python配置 在新增的配置Json文件添加下图红框这一行

阿里云OSS

进入阿里云官网,手机号短信登录

Ansible 中的copy 复制模块应用详解

作者主页:点击! Ansible专栏:点击! 创作时间:2024年4月25日13点40分 Ansible 中的 copy 模块用于将文件或目录从本地计算机或远程主机复制到远程主机上的特定位置。它是一个功能强大的模块,可用于各种文…

prometheus helm install 如何配置告警模版

对接企业微信 获取企业id 注册完成之后,通过企业微信官网登录后台管理,在【我的企业】的企业信息里面,获取到Alertmanager服务配置需用到的第一个配置:企业ID 获取部门id 部门ID 在【通讯录】中,添加一个子部门&a…

无人机+自组网:2U机架车载式自组网电台技术详解

自组网的特点包括自发现、自动配置、自组织和自愈等。由于网络中的节点可以随时加入或离开,自组网需要能够自动感知拓扑结构的变化,并快速调整路由策略以适应新的网络环境。此外,自组网中的节点还需要具备节能、安全和分布式管理等特性&#…

maixcam如何无脑运行运行别人的模型(以安全帽模型为例)

maixcam如何无脑运行运行别人的模型(以安全帽模型为例) 本文章主要讲如何部署上传的模型文件,以及如果你要把你模型按照该流程应该怎么修改,你可以通过该文章得到你想要的应该,该应用也包含的退出按钮,是屏…

质量管理系统( QMS):一文扫盲,质量重于泰山。

一、什么是QMS系统 QMS系统是质量管理系统(Quality Management System)的缩写。它是一种组织内部用于管理和控制质量相关活动的体系,旨在确保产品或服务符合质量标准和客户要求。 QMS系统通常包括一系列文件、程序和流程,用于规…

Linux常用命令总结(四):文件权限及相关命令介绍

1. 文件属性信息解读 1. 文件类型和权限的表示 0首位表示类型。在Linux中第一个字符代表这个文件是目录、文件或链接文件 符号对应文件类型-代表文件dd 代表目录l链接文档(link file); 1-3位确定属主(该文件的所有者)拥有该文件的权限。 4-6…

【信息收集】端口扫描masscan负载均衡识别lbd

★★免责声明★★ 文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与学习之用,读者将信息做其他用途,由Ta承担全部法律及连带责任,文章作者不承担任何法律及连带责任。 1、什么是masscan masscan在kali系统上是自带的端口扫描…

【golang学习之旅】报错:a declared but not used

目录 报错原因解决方法参考 报错 代码很简单,如下所示。可以发现a和b都飙红了: 运行后就会出现报错: 报错翻译过来就是a已经声明但未使用。当时我很疑惑,在其他语言中从来没有这种情况。况且这里的b不是赋值了吗,怎…