【学习记录】autoware标定相机与激光雷达外参

一、autoware选择

这里踩了好几个坑,首先autoware作为一个无人驾驶知名框架,其内部实际上是有两套标定的东西的,这一点绝大多数博客没有提到。其中最常用的是一个叫标定工具箱的东西,这个ros包已经在1.10往后的版本中被删掉了,所以网上的资料都是基于前人提取出来的代码进行单独编译然后运行,这种标定方法需要用到标定板,个人感觉比较麻烦,用这个标定工具箱,最好是在车上的工控机直接装好相应的程序,录制rosbag有时候提取效果并不好,而且对于标定板的位置和朝向都有许多讲究。

使用这种标定工具箱可以参考:

https://blog.csdn.net/qq_38988221/article/details/129161061
https://blog.csdn.net/mensan1998/article/details/118736810

除了这个方法,其实使用autoware自带的联合标定工具会更方便,这个标定工具在现在的版本里面都还有,其原理就是选择九对相机和点云中的点,然后计算外参矩阵。

使用联合标定工具可以参考:

https://blog.csdn.net/qq_40216084/article/details/108627919
https://blog.csdn.net/lemonxiaoxiao/article/details/107909149?utm_medium=distribute.wap_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-107909149-blog-108627919.237^v3^wap_relevant_t0_download&spm=1001.2101.3001.4242.1
https://blog.csdn.net/HelloJinYe/article/details/106863585?utm_medium=distribute.wap_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-4-106863585-blog-108627919.237^v3^wap_relevant_t0_download&spm=1001.2101.3001.4242.3

二、利用docker可视化界面运行autoware

由于autoware.ai本身已经不再更新了,许多库文件也好源代码也好官方管理的也乱七八糟,所以用docker是目前启动autoware最快捷方便的方法,这里额外记录一下用docker来启动autoware。有关docker的基本使用方法可以参考之前的博客

下载好官方的docker之后,内部是带有ros的,我们可以直接进入docker来启动ros,如果需要新建一个命令行界面,则可以在宿主机重新开一个终端,然后使用下面的指令再进入一次docker。

sudo docker exec -it 你的docker的ID bash

在运行autoware的过程中,一定会用到可视化界面,包括rviz以及autoware的可视化配置界面等内容,这种情况下,需要给docker配置可视化的设置才能将docker内部的东西显示在外面,可以参考链接:

https://blog.csdn.net/qq_42731705/article/details/130798908
https://www.cnblogs.com/jiftle/p/13584725.html

由于标定需要用到提前录制好的rosbag以及内参文件,这里推荐在启动docker时顺便做一下地址映射,这样子就可以很方便地在docker内外传递文件,我启动docker时的指令为:

sudo docker run -it 镜像名称 -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY -e 宿主机的文件位置:docker内部的位置

之后就可以利用autoware进行标定,标定在启动过程需要指定内参文件和图像的topic,之后就可以进入到下面的界面进行点的选择,个人推荐在合适的位置,按空格暂停rosbag的播放,然后点击图像的点,然后点击点云中的点,没有合适的就按空格继续播放rosbag,重复这套操作直到选择九对点。
在这里插入图片描述
这个过程中遇到的一个问题是内参文件的格式,最开始我是用ros自带的标定工具去用棋盘格标定的相机内参,然后直接导出为yaml文件,但是用这个文件使用autoware标定时,选完点之后一直报错,错误信息如下:
在这里插入图片描述
查了很多资料也没找出问题所在,后来在一个博客里面发现了别人标定时用的yaml文件,这才发现原来autoware标定时的内参文件和ros标定工具输出的格式是不一样的。

autoware需要的格式为:

%YAML:1.0
---
CameraExtrinsicMat: !!opencv-matrix
   rows: 4
   cols: 4
   dt: d
   data: [ 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
       1. ]
CameraMat: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [ 6.0930328797947482e+02, 0., 3.1031651266062545e+02, 0.,
       6.0899238994475002e+02, 2.4626671682512318e+02, 0., 0., 1. ]
DistCoeff: !!opencv-matrix
   rows: 5
   cols: 1
   dt: d
   data: [ 8.6431249579251121e-02, -1.4704874856941597e-01,
       -5.5439696020033046e-04, -1.9515514445514945e-03,
       -2.6628324052679192e-01 ]
ImageSize: [640, 480]
Reprojection Error: 0.0
DistModel: plumb_bob

ros直接输出的格式为:

image_width: 640
image_height: 480
camera_name: narrow_stereo
camera_matrix:
  rows: 3
  cols: 3
  data: [410.73262,   0.     , 318.33938,
           0.     , 411.97988, 190.16781,
           0.     ,   0.     ,   1.     ]
distortion_model: plumb_bob
distortion_coefficients:
  rows: 1
  cols: 5
  data: [0.009894, 0.015771, -0.011451, -0.007740, 0.000000]
rectification_matrix:
  rows: 3
  cols: 3
  data: [1., 0., 0.,
         0., 1., 0.,
         0., 0., 1.]
projection_matrix:
  rows: 3
  cols: 4
  data: [420.87268,   0.     , 312.09444,   0.     ,
           0.     , 421.67639, 184.16815,   0.     ,
           0.     ,   0.     ,   1.     ,   0.     ]

我们需要把下面的内容调整到上面的格式中,其实就是将distortion_coefficients和camera_matrix复制到上面,CameraExtrinsicMat保持不动就行,这个部分标定完autoware会把外参信息填在这里。

标定完可以参考博客对标定结果验证,博客里面提到了默认情况下激光雷达的topic名称是写死的,其实我们也可以不用重新在docker内部编译,可以直接在播放rosbag的时候对topic进行重命名,指令为:

rosbag play calibration.bag -l /lidar/point:=/points_raw

标定完之后效果如下,完美搞定标定任务!
在这里插入图片描述

三、多相机标定

这里最后再补充记录一个标定过程遇到的问题,由于我们的采集设备是一个激光雷达和三个激光雷达,上图为中间相机和激光雷达的外参检验结果,由于基本在一条线上,所以可以看到投影的结果十分准确,但是在标定左右相机的时候,投影的结果明显不一样,左右相机的投影结果如下。
在这里插入图片描述
在这里插入图片描述
本来以为是标定没操作好,和师兄交流的过程中突然就悟道了,第一张图为左相机的投影结果,由于相机在激光雷达左边,所以部分被遮挡的地方向左投影时就是空的,反过来,右边的相机则是右边出现了空。所以在这种情况下,只要边缘位置准确就可以。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/571973.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

全彩屏负氧离子监测站的使用

TH-FZ5在繁忙的都市生活中,我们往往忽视了一个至关重要的问题——空气质量。随着工业化的进程加速,空气污染已成为影响人们健康的一大隐患。为了实时监测和了解身边的空气质量,全彩屏负氧离子监测站应运而生,成为了我们守护呼吸健…

百篇博客 · 千里之行

时光荏苒流逝,白驹匆匆过隙,不知不觉间,Damon小智已经在CSDN上记录了第一百多篇文章。恰逢128天创作纪念日的此刻,我感慨良多,这百余篇博客不仅是我的创作历程,更见证了我在这五年技术生涯中走过心路历程。…

用友政务财务系统 FileDownload 任意文件读取漏洞复现

0x01 产品简介 用友政务财务系统具有多项核心功能,旨在满足各类组织的财务管理需求。首先,它提供了财务核算功能,能够全面管理企业的总账、固定资产、现金、应付应收等模块,实时掌握企业的财务状况,并通过科目管理、凭证处理、报表分析等功能为决策提供有力支持。 0x02 …

【WEEK9】 【DAY3】JSR303数据校验及多环境切换【中文版】

2024.4.24 Wednesday 目录 4.JSR303数据校验及多环境切换4.1.JSR303数据校验(了解即可)4.1.1.修改Person.java4.1.2.修改pom.xml(添加依赖)4.1.3.运行Springboot02ConfigApplicationTests.java进行测试4.1.4.使用数据校验&#x…

JavaScript系列------2

1. JS 数据类型: 基本数据类型:number数字型,string字符串型,boolean布尔型,undefined未定义型,null空类型 引用数据类型:object对象 js 是弱数据类型的语言,只有当我们赋值了才知道是什么数据类型。 声明一个变量未赋值就是 un…

智慧校园:大数据助力校情分析

随着信息技术的快速发展,数据信息资源以井喷的姿态涌现。数据信息的大量涌现给人们带来丰富的数据信息资源,但面对海量的信息资源时,加大了人们对有效信息资源获取的难度,数据挖掘技术正是这一背景下的产物,基于数据挖…

【安卓13】解决带GMS编译报super分区空间不足错误

1、错误信息 2、解决方案 不同供应商修改分区大小的文件路径不一样,但是万变不离其宗,根据报错信息全局搜索关键词BOARD_SUPER_PARTITION_SIZE 这里以RK供应商和AML供应商修改为例: (1)RK改法: 根目录下…

2024深圳杯数学建模竞赛D题(东三省数学建模竞赛D题):建立非均质音板振动模型与参数识别模型

更新完整代码和成品完整论文 《2024深圳杯&东三省数学建模思路代码成品论文》↓↓↓(浏览器打开) https://www.yuque.com/u42168770/qv6z0d/zx70edxvbv7rheu7?singleDoc# 2024深圳杯数学建模竞赛D题(东三省数学建模竞赛D题&#xff0…

构建高效智能的理赔业务系统:保险科技的未来

随着保险行业的发展和科技的不断进步,理赔业务作为保险服务的重要环节,也在不断演进和改进。传统的理赔流程可能存在效率低下、信息不透明等问题,而现代化的理赔业务系统则能够通过数字化、智能化等手段提升理赔服务的质量和效率,…

【机器学习】朴素贝叶斯解决实际问题

之前写过这样一道题: 现在换成使用朴素贝叶斯解决这个问题 首先先了解一下朴素贝叶斯 这是之前课本里的笔记记录: 【机器学习笔记】朴素贝叶斯(从先验分布到后验分布)-CSDN博客 简单的讲解一下这道题需要的知识点 朴素贝叶斯是…

【ensp】网关冗余vrrp实验

备战中级网络工程师 目录 vrrp(虚拟路由冗余技术) 为什么会出现vrrp? 两个角色 选举流程 基本原理 VRRP 的两个定时器 VRRP 的主备切换 主备切换的条件 VRRP 主备回切 认证方式 冗余路由器 冗余核心交换机 vrrp(虚拟路…

【04-提升模型性能:集成学习与超参数优化】

文章目录 前言集成学习BaggingBoosting超参数优化随机搜索贝叶斯优化总结前言 在前几篇博文中,我们已经介绍了一些机器学习的基础知识、Scikit-learn的核心工具与技巧,以及如何评估模型性能。本篇博文将重点讲解两个可以显著提升机器学习模型性能的高级策略:集成学习和超参数…

Github 2024-04-25Go开源项目日报Top10

根据Github Trendings的统计,今日(2024-04-25统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Go项目10Vue项目1Go编程语言:构建简单、可靠和高效的软件 创建周期:3474 天开发语言:Go协议类型:BSD 3-Clause “New” or “Revised” Lic…

基于spark进行数据分析的心力衰竭可视化大屏项目

基于spark进行数据分析的心力衰竭可视化大屏项目 项目背景 在当今的医疗领域,数据驱动的决策变得日益重要。心力衰竭作为常见的心血管疾病,其临床数据的分析对于改善患者治疗结果至关重要。本文将介绍如何利用Apache Spark进行大规模心力衰竭临床数据的…

浅谈免杀下的持久化

文章目录 前记注册表计划任务COM劫持后记reference 前记 实战中持久化的手段常用的就是加服务、添改注册表、加计划任务、劫持等,这里探索c/c下的维权免杀 注册表 用户级 \HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run \HKEY_CURRENT_USER…

正则表达式.java

正则表达式的作用: ①可以校验字符串是否满足一定的规则,并用来校验数据格式的合法性🧸 🧩[]:只能是括号里的字符 🧩[^]:除了括号里的字符 🧩[- -]:表示两段范围,满足其一即可 &a…

Linux系统内存持续飙高,如何排查

若一台服务器内存使用率持续处于高峰值,可能会导致响应慢(如:ssh操作卡顿、用户访问失败或超时等) 1.查看系统内存使用情况 free -m 2.查看哪些进程内存占用比较高 top 或htop 观察进程PID和命令确认是哪一个进程占用内存较高 …

Mogdb 5.0新特性:SQL PATCH绑定执行计划

前言 熟悉Oracle的dba都知道,生产系统出现性能问题时,往往是SQL走错了执行计划,紧急情况下,无法及时修改应用代码,dba可以采用多种方式针对于某类SQL进行执行计划绑定,比如SQL Profile、SPM、SQL Plan Base…

【prometheus】监控MySQL并实现可视化

目录 一、概述 1.1下载解压mysqld_exporter 1.2创建MySQL授权用户 1.3配置my.cnf 1.4启动mysqld_exporter 1.5prometheus配置修改 二、Grafana展示 【Prometheus】概念和工作原理介绍_prometheus工作原理 【Prometheus】k8s集群部署node-exporter 【prometheus】k8s集…

Python | Leetcode Python题解之第48题旋转图像

题目: 题解: class Solution:def rotate(self, matrix: List[List[int]]) -> None:n len(matrix)# 水平翻转for i in range(n // 2):for j in range(n):matrix[i][j], matrix[n - i - 1][j] matrix[n - i - 1][j], matrix[i][j]# 主对角线翻转for …