H264编码标准中游程编码应用介绍

H264编码标准

H.264编码标准,也被称作MPEG-4 AVC(Advanced Video Coding),是一种被广泛使用的数字视频压缩标准。它由国际电信联盟(ITU-T)和国际标准化组织(ISO)共同开发,旨在提供比以往标准更高的视频压缩效率,同时保持或提高视频质量。

主要特点:

  • 高压缩率:H.264能够在保持高质量的同时提供高压缩比,这使得它非常适合网络传输和存储。
  • 多种分辨率和帧率支持:H.264支持从低分辨率到高分辨率的多种格式,以及不同的帧率,使其应用范围非常广泛。
  • 帧内和帧间预测:H.264使用帧内预测和帧间预测技术来减少图像的冗余信息,提高压缩效率。
  • 变换编码:采用整数变换编码技术,将图像数据从空间域转换到频域。
  • 量化:H.264的量化算法更加精细,支持可变量化参数,适应不同的应用场景和传输条件。
  • 环路滤波:采用先进的环路滤波技术,对解码后的图像进行后处理,减少压缩带来的图像失真。

应用场景:
H.264因其出色的压缩性能和图像质量,被广泛应用于视频监控、视频会议、流媒体服务、数字电视广播等领域。

参考代码

  • JM:https://iphome.hhi.de/suehring/
    在这里插入图片描述

  • x264:https://www.videolan.org/developers/x264.html

git clone https://code.videolan.org/videolan/x264.git

在这里插入图片描述

  • openh264:https://github.com/cisco/openh264
    在这里插入图片描述

游程编码

行程编码(Run Length Encoding,RLE),又称游程编码、行程长度编码、变动长度编码等,是一种统计编码。主要技术是检测重复的比特或字符序列,并用它们的出现次数取而代之。比较适合于二值图像的编码,但是不适用于连续色调图像的压缩,例如日常生活中的照片。为了达到较好的压缩效果,有时行程编码和其他一些编码方法混合使用。

该压缩编码技术相当直观和经济,运算也相当简单,因此解压缩速度很快。RLE压缩编码尤其适用于计算机生成的图形图像,对减少存储容量很有效果。

【——百度百科】

游程编码的基本原理是将连续的重复数据用一个对来表示,这个对包含两个部分:

  • 计数值:表示数据重复的次数。
  • 数据值:表示被重复的数据。

应用场景

游程编码常用于图像压缩、文本压缩等领域,尤其是在数据中存在大量连续重复的模式时。

优缺点

优点

  • 简单:算法实现简单,易于理解和实现。
  • 高效:对于具有大量连续重复数据的文件,压缩比可以非常高。

缺点

  • 不适用:对于没有连续重复数据的文件,游程编码可能不会减少数据大小,甚至可能增加数据量(因为需要额外存储计数值)。

示例

假设我们有一串二进制数据:00011111111000011111110,应用游程编码后,可以表示为:

3 0(表示三个0)
7 1(表示七个1)
3 0(表示三个0)
7 1(表示七个1)

c++实现游程编码

  • RLE编码
#include <iostream>
#include <string>
#include <vector>

// 函数用于对字符串进行RLE编码
std::string rle_encode(const std::string& input) {
    std::string output;
    char last_char = 0;
    int count = 1;

    for (size_t i = 1; i <= input.size(); ++i) {
        if (i == input.size() || input[i] != last_char) {
            // 添加到输出
            output += std::to_string(count);
            output += last_char;
            // 重置计数器和最后一个字符
            count = 1;
            last_char = input[i];
        } else {
            // 如果当前字符与上一个相同,增加计数器
            ++count;
        }
    }

    return output;
}

// 主函数
int main() {
    std::string data = "AAAABBBCCDAA";
    std::string encoded_data = rle_encode(data);
    std::cout << "Encoded data: " << encoded_data << std::endl;
    return 0;
}
  • RLE解码
#include <iostream>
#include <string>
#include <cctype>

// 函数用于对RLE编码的字符串进行解码
std::string rle_decode(const std::string& input) {
    std::string output;
    for (size_t i = 0; i < input.length(); ) {
        // 解析计数
        int count = 0;
        while (i < input.length() && std::isdigit(input[i])) {
            count = count * 10 + (input[i++] - '0');
        }
        // 添加字符到输出
        while (count-- > 0) {
            output += input[i++];
        }
    }
    return output;
}

// 主函数中可以测试解码功能
int main() {
    std::string encoded_data = "4A3B2C1D2A";
    std::string decoded_data = rle_decode(encoded_data);
    std::cout << "Decoded data: " << decoded_data << std::endl;
    return 0;
}

这两个函数分别实现了RLE的编码和解码过程。编码函数rle_encode读取输入字符串,并为每个连续的字符序列生成一个计数和该字符。解码函数rle_decode则将编码后的字符串转换回原始字符串,它通过读取计数和紧跟的字符来重建原始数据。

H264编码标准中游程编码

  • 图像在进行离散变换后能量集中字啊低频和直流区域,其系数经过量化后低频和直流分量有少量较大值,高频区域除了有少量的较小值外大部分为零。为了更加有效的编码,可以根据系数的统计特性采用熵编码进一步压缩数据,在熵编码前可以根据从高到低的统计特性,对系数进行锯齿扫描和游程长度编码。
  • 在H264编码标准中,游程编码用3个量表示一个非零系数:第一个量是非零系数前0的个数;第二量为非零系数的值;第三个量为终止标志,常用1表示游程编码结束,0表示游程编码未结束。

示例

  • 如下图是以8x8的图像块,经过变换、量化后的系数按照zigzag扫描,排序成串行行数据序列:

12,0,0-6,4,6,0,0,0,0,0,-7,0,0,0,-2,0,0,…

  • 经过游程编码后的结果为:

(0,12,0)(2,-6,0)(0,4,0)(4,-7,0)(3,-2,1)

在这里插入图片描述

参考

  • 深入理解视频编解码技术——基于H.264标准及参考模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/571320.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++核心编程——4.5 运算符重载

4.5.0 运算符重载概念 对已有的运算符重新进行定义&#xff0c;赋予其另一种功能&#xff0c;以适应不同的数据类型 4.5.1 加号运算符重载 作用&#xff1a;实现两个自定义数据类型相加的运算 class Person { public:Person() {};Person(int a, int b){this->m_A a;this…

Bayes判别:统计学中的经典分类方法

在统计和机器学习领域&#xff0c;Bayes判别是一个基于概率理论的强大工具&#xff0c;用于解决分类问题。它基于Bayes定理&#xff0c;通过计算和比较后验概率来进行决策。这种方法在处理不确定性和不完整数据时表现尤为出色&#xff0c;因此在医学诊断、邮件过滤、语音识别等…

《十》Qt各种对话框之QFontDialog

QFontDialog 在介绍 QFontDialog 对话框之前&#xff0c;我们先简单介绍一下 QFont 字体类。QFont 主要用于控制文本显示的字体&#xff0c;字体主要有四大属性&#xff1a;①字体家族 family 决定字体外观家族&#xff0c;比如宋体、楷体等&#xff1b; ②字号 pointSize &am…

css文字和span在一行对不齐

1.需求背景 父盒子中有两个span&#xff0c;但是span中的文字对不齐。如下图&#xff0c;明显右边的文字偏高 处理后的效果&#xff08;已经对齐&#xff0c;图中标记的是基本的div结构&#xff09;&#xff1a; 2.该问题出现的原因&#xff1a; span1设置的高度比span2内…

thsi指针用法总结

1 c类对象中的变量和函数是分开存储的 2 所以对象共用一份成员函数&#xff0c;类的大小是指非静态的成员变量&#xff1b; this 完成链式操作 const 修饰成员函数

【Java 解析全国详细地址】Java 利用正则表达式完美解析全国省市区地址

这里写自定义目录标题 Java使用正则解析省市区/县 具体地址问题场景上demo运行结果 Java使用正则解析省市区/县 具体地址 问题场景 OCR识别营业执照 获取详细地址并拆分 上demo import java.util.HashMap; import java.util.Map; import java.util.regex.Matcher; import j…

使用API有效率地管理Dynadot域名,自查账户信息

关于Dynadot Dynadot是通过ICANN认证的域名注册商&#xff0c;自2002年成立以来&#xff0c;服务于全球108个国家和地区的客户&#xff0c;为数以万计的客户提供简洁&#xff0c;优惠&#xff0c;安全的域名注册以及管理服务。 Dynadot平台操作教程索引&#xff08;包括域名邮…

日本岛津电子天平UW UX 系列series 精密电子天平Shimadzu使用说明

日本岛津电子天平UW UX 系列series 精密电子天平Shimadzu使用说明

2024春季春日主题活动策划方案

2024解冻派对“春日浪漫”主题活动策划方案-32P 方案页码&#xff1a;32页 文件格式&#xff1a;pptx 方案简介&#xff1a; 春来一季&#xff0c;新生欢喜 花香丨微风丨阳光 活动唤起【春日浪漫记忆】&#xff01; 年轻人不一样的派对活动 可以与朋友/小朋友/家人互动…

MT3030 天梯赛

跟MT3029战神小码哥类似&#xff0c;都是贪心堆。注意开long long 这里的堆顶为战斗力最小的&#xff0c;便于贪心的反悔操作。先按容忍度从大到小排序&#xff08;q中总容忍度取决于最小的容忍度&#xff09;&#xff0c;再向q中存数&#xff0c;存到不能容忍之后再把堆顶踢出…

最简单也最复杂的德语动词,柯桥德语培训

德语人一定遇到过这个难题&#xff1a;ie组合到底发什么音&#xff1f; 说起haben&#xff0c;大家可能第一感觉是“这么简单的动词也要讲&#xff1f;不就是‘拥有’的意思吗&#xff1f;” 没错&#xff0c;haben的基本含义是“拥有&#xff0c;包含”&#xff0c;但是在某些…

Vue3后台管理系统推荐

目录 项目概述 &#x1f35f; 项目展示 功能特点 &#x1f957; 结语 &#x1f4a8; 项目概述 &#x1f35f; 基于Vue 3框架与Element-Plus UI组件库技术精心构建的后端管理模板。该模板系统已成功实现一个基础的权限管理模块&#xff0c;宗旨在于为追求高效二次开发的开发…

制作一个RISC-V的操作系统十四-任务同步和锁

文章目录 并发与同步临界区和锁锁死锁解决死锁自旋锁&#xff08;spin lock&#xff09;原子性问题原子操作实现amoswap.w.aq例子 另一种方法自旋锁的注意事项代码其他同步技术 并发与同步 控制流&#xff1a;可理解为任务或进程 中断也可以理解为一个切换到另一个任务&#…

【Linux网络】DHCP原理与配置

目录 一、DHCP工作原理 1.了解DHCP服务 2.使用DHCP的好处 3.DHCP的分配方式 二、DHCP的租约过程 三、DHCP场景应用实验 一、DHCP工作原理 1.了解DHCP服务 DHCP&#xff08;Dynamic Host Configuration Protocol&#xff0c;动态主机配置协议&#xff09; 由Internet工作…

<计算机网络自顶向下> 无连接传输UDP

UDP&#xff1a;User Datagram Protocol “尽力而为”的服务 报文可能丢掉或者乱序好处&#xff1a; 效率高&#xff08;不建立连接无拥塞控制和流量控制【应用->传输的速率主机->网络的速率】&#xff09;报文段的头部很小&#xff08;开销小&#xff09;UDP被用于 流媒…

数据结构系列-堆排序当中的T-TOK问题

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” 之前我们讲到了堆排序的实现逻辑&#xff0c;那么接下来我们重点关注的就是其中的T-TOK问题 T-TOK说简单点&#xff0c;就是说&#xff0c;假如有10000个数据&#xff08;随机的…

bottle,Python轻量级的Web框架!

目录 前言 安装 特性 基本功能 1. 路由功能 2. 请求参数获取 3. 静态文件服务 4. 模板渲染 高级功能 1. 中间件 2. 插件 3. 异步处理 实际应用场景 1. 小型Web应用 2. RESTful API服务 3. Web界面与后端逻辑分离 4. Web服务的快速原型开发 总结 前言 大家好&#xff0c…

YOLOv9改进策略 | 添加注意力篇 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)

一、本文介绍 本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制&#xff0c;它通过三个不同的视角来分析输入的数据&#xff0c;就好比三个人从不同的角度来观察同一幅画&#xff0c;然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入…

解密数字经济时代,元宇宙企业如何重塑商业价值?

从复盘中感知自我&#xff0c;坚持和过去对话&#xff0c;并引入未来的思考&#xff0c;飞天云动是一个典型的案例。 在科技的飞速发展和数字化浪潮的推动下&#xff0c;元宇宙这一概念如同一颗冉冉升起的新星&#xff0c;吸引了全球的目光。就目前而言&#xff0c;围绕元宇宙…

Ubuntu终端自动补全

文章目录 前言配置安装zsh安装 oh-my-zsh安装自动补全插件zsh-autosuggestions 参考 前言 Oh My Zsh 是一个针对命令行 shell 的开源框架&#xff0c;主要用于增强和美化命令行环境。它建立在 Zsh&#xff08;一种强大的 shell 替代品&#xff09;之上&#xff0c;提供了丰富的…