在OK3588板卡上部署模型实现人工智能OCR应用

一、主机模型转换

我们依旧采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境
conda activate ok3588

安装rknn-toolkit2(该工具不能在OK3588板卡上完成模型转换)

git clone https://github.com/rockchip-linux/rknn-toolkit2
cd rknn-toolkit2
注意这里需要1.4的版本
git checkout v1.4.0 -f
cd packages
pip install rknn_toolkit2-1.4.0_22dcfef4-cp36-cp36m-linux_x86_64.whl

下载FastDeploy

git clone https://github.com/PaddlePaddle/FastDeploy
cd FastDeploy/examples/vision/ocr/PP-OCR

下载PP-OCRv3文字检测模型

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar

下载文字方向分类器模型

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar

下载PP-OCRv3文字识别模型

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar

安装模型转换工具

pip install paddle2onnx
pip install pyyaml

paddle2onnx --model_dir ch_PP-OCRv3_det_infer \
            --model_filename inference.pdmodel \
            --params_filename inference.pdiparams \
            --save_file ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
            --enable_dev_version True
paddle2onnx --model_dir ch_ppocr_mobile_v2.0_cls_infer \
            --model_filename inference.pdmodel \
            --params_filename inference.pdiparams \
            --save_file ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
            --enable_dev_version True
paddle2onnx --model_dir ch_PP-OCRv3_rec_infer \
            --model_filename inference.pdmodel \
            --params_filename inference.pdiparams \
            --save_file ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
            --enable_dev_version True

固定模型的输入shape

python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
                               --output_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
                               --input_shape_dict "{'x':[1,3,960,960]}"
python -m paddle2onnx.optimize --input_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
                               --output_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
                               --input_shape_dict "{'x':[1,3,48,192]}"
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
                               --output_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
                               --input_shape_dict "{'x':[1,3,48,320]}"

转换成RKNN模型

python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_det.yaml \
                              --target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_rec.yaml \
                              --target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_cls.yaml \
                              --target_platform rk3588

这时生成了三个可以部署在OK3588上的模型文件
ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn
把这三个文件传输到OK3588板卡上

二、板卡模型部署

进入虚拟环境
conda activate ok3588
cd FastDeploy/examples/vision/ocr/PP-OCR/rockchip/cpp
mkdir build
cd build
cmake … -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/
make -j
得到了编译后的文件 infer_demo

三、执行推理

下载图片和字典文件

wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt

拷贝RKNN模型到build目录

三个模型文件
ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn
放在build文件夹里面

RKNPU推理

./infer_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn \
                            ./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn \
                             ./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn \
                              ./ppocr_keys_v1.txt \
                              ./12.jpg \
                              1

推理结果展示

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/56818.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云原生】Kubernetes中deployment是什么?

目录 Deployments 更新 Deployment 回滚 Deployment 缩放 Deployment Deployment 状态 清理策略 金丝雀部署 编写 Deployment 规约 Deployments 一个 Deployment 为 Pod 和 ReplicaSet 提供声明式的更新能力。 你负责描述 Deployment 中的 目标状态,而 De…

基于RK3588+FPGA+AI算法定制的智慧交通与智能安防解决方案

随着物联网、大数据、人工智能等技术的快速发展,边缘计算已成为当前信息技术领域的一个热门话题。在物联网领域,边缘计算被广泛应用于智慧交通、智能安防、工业等多个领域。因此,基于边缘计算技术的工业主板设计方案也受到越来越多人的关注。…

python-爬虫作业

# -*- coding:utf-8 -*-Author: 董咚咚 contact: 2648633809qq.com Time: 2023/7/31 17:02 version: 1.0import requests import reimport xlwt from bs4 import BeautifulSoupurl "https://www.dygod.net/html/gndy/dyzz/" hd {user-Agent:Mozilla/4.0 (Windows N…

【雕爷学编程】Arduino动手做(180)---Seeeduino Lotus开发板2

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

学习系统编程No.33【生产消费模型】

引言: 北京时间:2023/7/22/14:27,现实和预期往往相差是巨大的,哈哈哈!白天睡不醒,晚上睡不着,就像一个夜猫子一样。熬夜耍手机,我真的是专业的,已经连续好久没有正常睡过…

DAY56:单调栈(二)下一个最大元素Ⅱ(环形数组处理思路)

文章目录 思路写法1完整版环形数组处理:i取模,遍历两遍写法2完整版(环形数组推荐写法)debug测试:逻辑运算符短路特性result数组在栈口取元素,是否会覆盖原有数值? 给定一个循环数组 nums &#…

Unity 性能优化五:渲染模块压力

CPU压力 Batching 在GPU渲染前,CPU会把数据按batch发送给GPU,每发送一次,都是一个drawcall,GPU在渲染每个batch的时候,会切换渲染状态,这里的渲染状态指的是:影响对象在屏幕上的外观的渲染属性…

竞速榜实时离线对数方案演进介绍 | 京东云技术团队

一、背景 竞速榜是大促期间各采销群提供的基于京东实时销售数据的排行榜,同样应对大促流量洪峰场景,通过榜单撬动品牌在京东增加资源投入。竞速榜基于用户配置规则进行实时数据计算,榜单排名在大促期间实时变化,相关排名数据在微…

vscode添加自定义的用户代码片段

在vscode中添加代码片段 选择“新建全局代码片段文件,然后输入文件名(随便输入) 然后会生成文件,安装文件中的Example就可以添加代码片段 里面各个字段的含义: "Print to console:代码片段的名称&…

迷你主机中的战斗机 Intel NUC 12 Serpent Canyon拆解

千呼万唤始出来,新一代游戏和创作者性能怪兽 mini主机 NUC 12 Serpent Canyon(巨蛇峡谷终于发售了,以超紧凑的 2.5 升尺寸提供用户所需的所有性能和创新功能。NUC 12 Enthusiast 还首次将 Intel Deep Link 引入桌面,使 CPU 和 GPU…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板5

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

git常用指令

git add命令 作用:移动文件:工作区-->暂存区 git add .:把所有文件都放到暂存区 git commit命令 作用:移动文件:暂存区-->本地仓库 git status命令 作用:查看修改状态 git log命令 作用&#xf…

天津web前端开发培训班 零基础如何学习前端?

学习Web前端有很多好处,它可以提高你的数字技能,使你更具有竞争力,而且Web前端是一个需求量很大的岗位,有这项技能在手,你可以轻松地找到一份工作。 什么是web前端 前端开发是创建web页面或app等前端界面给用户的过程…

大数据学习教程:Linux 高级教程(上)

一、Linux用户与权限 1. 用户和权限的基本概念 1.1、基本概念 用户 是Linux系统工作中重要的一环, 用户管理包括 用户 与 组 管理 在Linux系统中, 不论是由本级或是远程登录系统, 每个系统都必须拥有一个账号, 并且对于不同的系统资源拥有不同的使用权限 对 文件 / 目录 的…

Spring之事务实现方式及原理

目录 Spring事务简介 Spring支持事务管理的两种方式 编程式事务控制 声明式事务管理 Spring事务角色 未开启事务之前 开启Spring的事务管理后 事务配置 事务传播行为 事务传播行为的可选值 Spring事务简介 事务作用:在数据层保障一系列的数据库操作同成功…

VR 变电站事故追忆反演——正泰电力携手图扑

VR(Virtual Reality,虚拟现实)技术作为近年来快速发展的一项新技术,具有广泛的应用前景,支持融合人工智能、机器学习、大数据等技术,实现更加智能化、个性化的应用。在电力能源领域,VR 技术在高性能计算机和专有设备支…

【多模态】21、BARON | 通过引入大量 regions 来提升模型开放词汇目标检测能力(CVPR2021)

文章目录 一、背景二、方法2.1 主要过程2.2 Forming Bag of Regions2.3 Representing Bag of Regions2.4 Aligning bag of regions 三、效果 论文:Aligning Bag of Regions for Open-Vocabulary Object Detection 代码:https://github.com/wusize/ovdet…

网络安全进阶学习第九课——SQL注入介绍

文章目录 一、什么是注入二、什么是SQL注入三、SQL注入产生的原因四、SQL注入的危害五、SQL注入在渗透中的利用1、绕过登录验证:使用万能密码登录网站后台等。2、获取敏感数据3、文件系统操作4、注册表操作5、执行系统命令 六、如何挖掘SQL注入1、SQL注入漏洞分类按…

LLaMA系列 | LLaMA和LLaMA-2精简总结

文章目录 1、LLaMA1.1、模型结构1.2、训练方式1.3、结论 2、LLaMA-22.1、相比LLaMA1的升级2.3、模型结构2.3.1、MHA, MQA, GQA区别与联系 2.4、训练方式 1、LLaMA 🔥 纯基座语言模型 《LLaMA: Open and Efficient Foundation Language Models》:https:/…

大麦链接源码 大麦一键生成订单截图

8.4最新版源码 更新了大麦链接模版 更新了大麦订单截图一键生成 下载源码:https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3