想冲宇宙厂,直接挂了。。。

宇宙厂实际是字节,这个称呼是因为字节跳动主宰了宇宙内一切App,有点家大业大的意思。

今天分享一位字节春招凉经,问了一些数据库和Java八股,没出算法题,直接挂了,竟然最喜欢出算法题的字节,这次面试竟然没出算法题。

八股问题不算很多,简单给大家罗列了一下,也针对每一个问题给出解析,大家可以边复习边查漏补缺。

图片

数据库

数据库日志有哪些?分别有什么用?

  • undo log(回滚日志):是 Innodb 存储引擎层生成的日志,实现了事务中的原子性,主要用于事务回滚和 MVCC

  • redo log(重做日志):是 Innodb 存储引擎层生成的日志,实现了事务中的持久性,主要用于掉电等故障恢复

  • binlog (归档日志):是 Server 层生成的日志,主要用于数据备份和主从复制

Redis数据结构有哪些?应用场景是什么?

Redis 提供了丰富的数据类型,常见的有五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)

图片

图片

随着 Redis 版本的更新,后面又支持了四种数据类型:BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)。Redis 五种数据类型的应用场景:

  • String 类型的应用场景:缓存对象、常规计数、分布式锁、共享 session 信息等。

  • List 类型的应用场景:消息队列(但是有两个问题:1. 生产者需要自行实现全局唯一 ID;2. 不能以消费组形式消费数据)等。

  • Hash 类型:缓存对象、购物车等。

  • Set 类型:聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。

  • Zset 类型:排序场景,比如排行榜、电话和姓名排序等。

Redis 后续版本又支持四种数据类型,它们的应用场景如下:

  • BitMap(2.2 版新增):二值状态统计的场景,比如签到、判断用户登陆状态、连续签到用户总数等;

  • HyperLogLog(2.8 版新增):海量数据基数统计的场景,比如百万级网页 UV 计数等;

  • GEO(3.2 版新增):存储地理位置信息的场景,比如滴滴叫车;

  • Stream(5.0 版新增):消息队列,相比于基于 List 类型实现的消息队列,有这两个特有的特性:自动生成全局唯一消息ID,支持以消费组形式消费数据。

redis中的zset底层数据结构是怎么实现的?

redis持久化的方式有哪些?

Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

Redis 持久化的方式有两种:

  • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;

  • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;

AOF 日志是如何实现的?

Redis 在执行完一条写操作命令后,就会把该命令以追加的方式写入到一个文件里,然后 Redis 重启时,会读取该文件记录的命令,然后逐一执行命令的方式来进行数据恢复。

图片

我这里以「_set name xiaolin_」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下图:

图片

Redis 提供了 3 种写回硬盘的策略, 在 Redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:

  • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;

  • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;

  • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

我也把这 3 个写回策略的优缺点总结成了一张表格:

图片

RDB 快照是如何实现的呢?

因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。

为了解决这个问题,Redis 增加了 RDB 快照。所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:

  • 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程

  • 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞

Redis为什么快?

原因:

  • Redis 的大部分操作都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU,既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了;

  • Redis 采用单线程模型可以避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。

  • Redis 采用了 I/O 多路复用机制处理大量的客户端 Socket 请求,IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听 Socket 和已连接 Socket。内核会一直监听这些 Socket 上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

Java

Java怎么获取数据库字段?

可以使用JDBC来获取数据库字段。通过执行SQL查询语句,可以从数据库中检索所需的字段数据。以下是一个简单的示例代码:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class Main {
    public static void main(String[] args) {
        try {
            // 连接数据库
            Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydatabase", "username", "password");

            // 创建Statement对象
            Statement stmt = conn.createStatement();

            // 执行查询语句
            ResultSet rs = stmt.executeQuery("SELECT column1, column2 FROM mytable");

            // 遍历结果集
            while (rs.next()) {
                String value1 = rs.getString("column1");
                String value2 = rs.getString("column2");
                
                // 处理获取到的字段数据
                System.out.println("Value1: " + value1 + ", Value2: " + value2);
            }

            // 关闭连接
            rs.close();
            stmt.close();
            conn.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

在上面的代码中,首先建立数据库连接,然后创建Statement对象执行查询语句,通过ResultSet对象获取数据库字段的值,并进行处理。最后记得关闭连接以释放资源。

说一下你知道的创建线程的方式

方式一:继承Thread类并重写run()方法。

public class CreatingThread01 extends Thread {
    @Override
    public void run() {
        System.out.println(getName() + " is running");
    }

    public static void main(String[] args) {
        new CreatingThread01().start();
        new CreatingThread01().start();
        new CreatingThread01().start();
        new CreatingThread01().start();
    }
}

采用继承Thread类方式

  • 优点: 编写简单,如果需要访问当前线程,无需使用Thread.currentThread ()方法,直接使用this,即可获得当前线程

  • 缺点:因为线程类已经继承了Thread类,所以不能再继承其他的父类

方式二:实现Runnable接口并实现run()方法,然后将实现了Runnable接口的类传递给Thread类。

public class CreatingThread02 implements Runnable {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + " is running");
    }

    public static void main(String[] args) {
        new Thread(new CreatingThread02()).start();
        new Thread(new CreatingThread02()).start();
        new Thread(new CreatingThread02()).start();
        new Thread(new CreatingThread02()).start();
    }
}

采用实现Runnable接口方式:

  • 优点:线程类只是实现了Runable接口,还可以继承其他的类。在这种方式下,可以多个线程共享同一个目标对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU代码和数据分开,形成清晰的模型,较好地体现了面向对象的思想。

  • 缺点:编程稍微复杂,如果需要访问当前线程,必须使用Thread.currentThread()方法。

方式三:使用Callable和Future接口通过Executor框架创建线程。

public class CreatingThread03 implements Callable<Long> {
    @Override
    public Long call() throws Exception {
        Thread.sleep(2000);
        System.out.println(Thread.currentThread().getId() + " is running");
        return Thread.currentThread().getId();
    }

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        FutureTask<Long> task = new FutureTask<>(new CreatingThread03());
        new Thread(task).start();
        System.out.println("等待完成任务");
        Long result = task.get();
        System.out.println("任务结果:" + result);
    }
}

采用实现Callable接口方式:

  • 缺点:编程稍微复杂,如果需要访问当前线程,必须调用Thread.currentThread()方法。

  • 优点:线程只是实现Runnable或实现Callable接口,还可以继承其他类。这种方式下,多个线程可以共享一个target对象,非常适合多线程处理同一份资源的情形。

介绍一下线程池工作原理

线程池是为了减少频繁的创建线程和销毁线程带来的性能损耗。

线程池分为核心线程池,线程池的最大容量,还有等待任务的队列,提交一个任务,如果核心线程没有满,就创建一个线程,如果满了,就是会加入等待队列,如果等待队列满了,就会增加线程,如果达到最大线程数量,如果都达到最大线程数量,就会按照一些丢弃的策略进行处理。

图片

线程池的构造函数有7个参数:

图片

  • corePoolSize:线程池核心线程数量。默认情况下,线程池中线程的数量如果 <= corePoolSize,那么即使这些线程处于空闲状态,那也不会被销毁。

  • maximumPoolSize:线程池中最多可容纳的线程数量。当一个新任务交给线程池,如果此时线程池中有空闲的线程,就会直接执行,如果没有空闲的线程且当前线程池的线程数量小于corePoolSize,就会创建新的线程来执行任务,否则就会将该任务加入到阻塞队列中,如果阻塞队列满了,就会创建一个新线程,从阻塞队列头部取出一个任务来执行,并将新任务加入到阻塞队列末尾。如果当前线程池中线程的数量等于maximumPoolSize,就不会创建新线程,就会去执行拒绝策略。

  • keepAliveTime:当线程池中线程的数量大于corePoolSize,并且某个线程的空闲时间超过了keepAliveTime,那么这个线程就会被销毁。

  • unit:就是keepAliveTime时间的单位。

  • workQueue:工作队列。当没有空闲的线程执行新任务时,该任务就会被放入工作队列中,等待执行。

  • threadFactory:线程工厂。可以用来给线程取名字等等

  • handler:拒绝策略。当一个新任务交给线程池,如果此时线程池中有空闲的线程,就会直接执行,如果没有空闲的线程,就会将该任务加入到阻塞队列中,如果阻塞队列满了,就会创建一个新线程,从阻塞队列头部取出一个任务来执行,并将新任务加入到阻塞队列末尾。如果当前线程池中线程的数量等于maximumPoolSize,就不会创建新线程,就会去执行拒绝策略。

线程的状态有哪些?

图片

源自《Java并发编程艺术》 java.lang.Thread.State枚举类中定义了六种线程的状态,可以调用线程Thread中的getState()方法获取当前线程的状态

线程状态解释
NEW尚未启动的线程状态,即线程创建,还未调用start方法
RUNNABLE就绪状态(调用start,等待调度)+正在运行
BLOCKED等待监视器锁时,陷入阻塞状态
WAITING等待状态的线程正在等待另一线程执行特定的操作(如notify)
TIMED_WAITING具有指定等待时间的等待状态
TERMINATED线程完成执行,终止状态

线程池中shutdown (),shutdownNow()这两个方法有什么作用?

从源码【高亮】注释可以很清晰的看出两者的区别:

  • shutdown使用了以后会置状态为SHUTDOWN,正在执行的任务会继续执行下去,没有被执行的则中断。此时,则不能再往线程池中添加任何任务,否则将会抛出 RejectedExecutionException 异常

  • 而 shutdownNow 为STOP,并试图停止所有正在执行的线程,不再处理还在池队列中等待的任务,当然,它会返回那些未执行的任务。它试图终止线程的方法是通过调用 Thread.interrupt() 方法来实现的,但是这种方法的作用有限,如果线程中没有sleep 、wait、Condition、定时锁等应用, interrupt()方法是无法中断当前的线程的。所以,ShutdownNow()并不代表线程池就一定立即就能退出,它可能必须要等待所有正在执行的任务都执行完成了才能退出。

shutdown 源码:

public void shutdown() {
 final ReentrantLock mainLock = this.mainLock;
 mainLock.lock();
 try {
  checkShutdownAccess();
  // 高亮
  advanceRunState(SHUTDOWN);
  interruptIdleWorkers();
  onShutdown();
 } finally {
  mainLock.unlock();
 }
 tryTerminate();
}

shutdownNow 源码:

public List<Runnable> shutdownNow() {
 List<Runnable> tasks;
 final ReentrantLock mainLock = this.mainLock;
 mainLock.lock();
 try {
  checkShutdownAccess();
  // 高亮
  advanceRunState(STOP);
  interruptWorkers();
  // 高亮
  tasks = drainQueue();
 } finally {
  mainLock.unlock();
 }
 tryTerminate();
 // 高亮
 return tasks;
}

提交给线程池中的任务可以被撤回吗?

可以,当向线程池提交任务时,会得到一个Future对象。这个Future对象提供了几种方法来管理任务的执行,包括取消任务。

取消任务的主要方法是Future接口中的cancel(boolean mayInterruptIfRunning)方法。这个方法尝试取消执行的任务。参数mayInterruptIfRunning指示是否允许中断正在执行的任务。如果设置为true,则表示如果任务已经开始执行,那么允许中断任务;如果设置为false,任务已经开始执行则不会被中断。

public interface Future<V> {
    // 是否取消线程的执行
    boolean cancel(boolean mayInterruptIfRunning);
    // 线程是否被取消
    boolean isCancelled();
    //线程是否执行完毕
    boolean isDone();
      // 立即获得线程返回的结果
    V get() throws InterruptedException, ExecutionException;
      // 延时时间后再获得线程返回的结果
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

取消线程池中任务的方式,代码如下,通过 future 对象的 cancel(boolean) 函数来定向取消特定的任务。

public static void main(String[] args) {
        ExecutorService service = Executors.newSingleThreadExecutor();
        Future future = service.submit(new TheradDemo());

        try {
          // 可能抛出异常
            future.get();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }finally {
          //终止任务的执行
            future.cancel(true);
        }
 }

怎么判断对象是否可以被回收?

垃圾收集器在做垃圾回收的时候,首先需要判定的就是哪些内存是需要被回收的,哪些对象是「存活」的,是不可以被回收的;哪些对象已经「死掉」了,需要被回收。一般有两种方法来判断:

  • 引用计数器法:为每个对象创建一个引用计数,有对象引用时计数器 +1,引用被释放时计数 -1,当计数器为 0 时就可以被回收。它有一个缺点不能解决循环引用的问题;

  • 可达性分析算法:从 GC Roots 开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是可以被回收的。

你知道哪些垃圾收集器?

图片

  • Serial收集器(复制算法): 新生代单线程收集器,标记和清理都是单线程,优点是简单高效;

  • ParNew收集器 (复制算法): 新生代收并行集器,实际上是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现;

  • Parallel Scavenge收集器 (复制算法): 新生代并行收集器,追求高吞吐量,高效利用 CPU。吞吐量 = 用户线程时间/(用户线程时间+GC线程时间),高吞吐量可以高效率的利用CPU时间,尽快完成程序的运算任务,适合后台应用等对交互相应要求不高的场景;

  • Serial Old收集器 (标记-整理算法): 老年代单线程收集器,Serial收集器的老年代版本;

  • Parallel Old收集器 (标记-整理算法):老年代并行收集器,吞吐量优先,Parallel Scavenge收集器的老年代版本;

  • CMS(Concurrent Mark Sweep)收集器(标记-清除算法):老年代并行收集器,以获取最短回收停顿时间为目标的收集器,具有高并发、低停顿的特点,追求最短GC回收停顿时间。

  • G1(Garbage First)收集器 (标记-整理算法):Java堆并行收集器,G1收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。此外,G1收集器不同于之前的收集器的一个重要特点是:G1回收的范围是整个Java堆(包括新生代,老年代),而前六种收集器回收的范围仅限于新生代或老年代

说一下你对 Spring 的理解

  1. IoC容器(Inversion of Control):Spring通过控制反转实现了对象的创建和对象间的依赖关系管理。开发者只需要定义好Bean及其依赖关系,Spring容器负责创建和组装这些对象。

  2. AOP(Aspect-Oriented Programming):面向切面编程,允许开发者定义横切关注点(cross-cutting concerns),例如事务管理、安全控制等,独立于业务逻辑的代码。通过AOP,可以将这些关注点模块化,提高代码的可维护性和可重用性。

  3. 事务管理:Spring提供了一致的事务管理接口,支持声明式和编程式事务。开发者可以轻松地进行事务管理,而无需关心具体的事务API。

  4. MVC框架:Spring MVC是一个基于Servlet API构建的Web框架,采用了模型-视图-控制器(MVC)架构。它支持灵活的URL到页面控制器的映射,以及多种视图技术。

Spring框架核心特性包括:

  1. IoC容器(Inversion of Control):Spring通过控制反转实现了对象的创建和对象间的依赖关系管理。开发者只需要定义好Bean及其依赖关系,Spring容器负责创建和组装这些对象。

  2. AOP(Aspect-Oriented Programming):面向切面编程,允许开发者定义横切关注点(cross-cutting concerns),例如事务管理、安全控制等,独立于业务逻辑的代码。通过AOP,可以将这些关注点模块化,提高代码的可维护性和可重用性。

  3. 事务管理:Spring提供了一致的事务管理接口,支持声明式和编程式事务。开发者可以轻松地进行事务管理,而无需关心具体的事务API。

  4. MVC框架:Spring MVC是一个基于Servlet API构建的Web框架,采用了模型-视图-控制器(MVC)架构。它支持灵活的URL到页面控制器的映射,以及多种视图技术。

图片

Spring框架核心特性包括:

  • IoC容器:Spring通过控制反转实现了对象的创建和对象间的依赖关系管理。开发者只需要定义好Bean及其依赖关系,Spring容器负责创建和组装这些对象。

  • AOP:面向切面编程,允许开发者定义横切关注点,例如事务管理、安全控制等,独立于业务逻辑的代码。通过AOP,可以将这些关注点模块化,提高代码的可维护性和可重用性。

  • 事务管理:Spring提供了一致的事务管理接口,支持声明式和编程式事务。开发者可以轻松地进行事务管理,而无需关心具体的事务API。

  • MVC框架:Spring MVC是一个基于Servlet API构建的Web框架,采用了模型-视图-控制器(MVC)架构。它支持灵活的URL到页面控制器的映射,以及多种视图技术。

Spring AOP的实现依赖于动态代理技术。动态代理是在运行时动态生成代理对象,而不是在编译时。它允许开发者在运行时指定要代理的接口和行为,从而实现在不修改源码的情况下增强方法的功能。Spring AOP支持两种动态代理:

  • 基于JDK的动态代理:使用java.lang.reflect.Proxy类和java.lang.reflect.InvocationHandler接口实现。这种方式需要代理的类实现一个或多个接口。

  • 基于CGLIB的动态代理:当被代理的类没有实现接口时,Spring会使用CGLIB库生成一个被代理类的子类作为代理。CGLIB(Code Generation Library)是一个第三方代码生成库,通过继承方式实现代理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/567507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Web3革命:区块链如何重塑互联网

引言 互联网的发展已经深刻地改变了我们的生活方式&#xff0c;而现在&#xff0c;Web3和区块链技术正在为我们提供一个全新的数字世界的视角。本文将带你深入了解Web3的核心概念、技术特性以及它如何正在重塑我们的互联网体验。 从Web1.0到Web3&#xff1a;数字革命的演进 W…

Git TortoiseGit 详细安装使用教程

前言 Git 是一个免费的开源分布式版本控制系统&#xff0c;是用来保存工程源代码历史状态的命令行工具&#xff0c;旨在处理从小型到非常大型的项目&#xff0c;速度快、效率高。《请查阅Git详细说明》。TortoiseGit 是 Git 的 Windows Shell 界面工具&#xff0c;基于 Tortoi…

在Visual Studio配置C++的netCDF库的方法

本文介绍在Windows电脑的Visual Studio软件中&#xff0c;配置C 语言最新版netCDF库的方法。 netCDF&#xff08;Network Common Data Form&#xff09;是一种用于存储、访问和共享科学数据的文件格式和库&#xff0c;其提供了一种灵活的方式来组织、描述和存储多维数据&#…

Python-VBA函数之旅-id函数

目录 一、id函数的常见应用场景&#xff1a; 二、id函数使用注意事项&#xff1a; 1、id函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博客 一、id函数的常见应用场景&#xff1a; id函…

【Linux开发实用篇】备份与恢复

备份 实体机无法做快照&#xff0c;我们可以使用备份和恢复技术 第一种方式 把需要的文件&#xff08;或者分区&#xff09;用TAR打包就好&#xff0c;下次恢复的时候进行解压 第二种方式 使用dump 和 restore 指令&#xff1a; 首先安装这两个指令 yum -y install dump, …

2024平替电容笔买哪个品牌好?iPad电容笔全能榜单热门款TOP5分享!

2024年&#xff0c;随着科技的不断发展和消费者对生活品质的追求&#xff0c;电容笔作为一种创新的无纸化工具&#xff0c;逐渐走进人们的生活和工作中。然而&#xff0c;在电容笔市场的繁荣背后&#xff0c;也隐藏着品质良莠不齐的现象。众多品牌为了追求利润&#xff0c;推出…

Ubuntu 安装 Harbor

一、安装 docker 原文参考传送门 1st 卸载系统自带的 docker 应用 for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done 2nd 设置Docker 的apt源 # Add Dockers official GPG key: sudo…

2024/4/23 C++day1

有以下定义&#xff0c;说明哪些量可以改变哪些不可以改变&#xff1f; const char *p; 指针可以改变 值不可以改变 const (char *) p; 语法错误 char *const p; 指针不可以改变 值可以改变 const char* const p; 指针和值…

做抖音小店正确起店的方式,新店铺想快速爆单,步骤就这几个

大家好&#xff0c;我是电商笨笨熊 开通了抖音小店&#xff0c;但是店铺一直没有流量&#xff1b; 很多新手玩家进入抖店后都会遇到这样那样的问题&#xff0c;烦恼的事情一大堆&#xff1b; 没关系&#xff0c;今天我们就来聊聊新店铺该怎么快速起店&#xff0c;新手如何做…

使用CSS3 + Vue3 + js-tool-big-box工具,实现炫酷五一倒计时动效

时间过得真是飞速&#xff0c;很快又要到一年一度的五一劳动节啦&#xff0c;今年五天假&#xff0c;做好准备了吗&#xff1f;今天我们用CSS3 Vue3 一个前端工具库 js-tool-big-box来实现一个炫酷的五一倒计时动效吧。 目录 1 先制作一个CSS3样式 2 Vue3功能提前准备 3…

莫名锁表? --- mysql的事务隔离级别

前言 系统响应超时 系统访问数据库特别慢 莫名提示锁等待超时 数据库锁表 事务长时间等锁&#xff0c;直到超时 以上问题都可能是事务锁表导致的 问题 今天测试反馈系统批量处理莫名提示锁等待超时&#xff0c;再次操作查看数据库事务确实存在等锁情况&#xff0c;甚至死锁。…

模版初阶【C++】

✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨ &#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1…

NLP自然语言处理_序章

开一个新篇章&#xff0c;立一个flag&#xff0c;用一段时间来学习一下NLP&#xff0c;涨涨见识。 准备以B站 机器学习算法到transformer神经网络模型应用视频作为入门&#xff0c;此分类专门用于记录学习过程中的知识点以备自用。 一、何为NLP自然语言处理&#xff1f; NLP…

云原生的基石:containerd引领未来容器发展趋势

文章目录 一、Containerd简介&#xff1a;容器技术的心脏二、Containerd核心原理解析三、Containerd与Docker的关系四、Containerd在云原生应用部署中的作用五、Containerd的扩展性和插件机制六、Containerd的安全特性七、Containerd的性能优化八、Containerd的社区和生态系统九…

文本向量化模型新突破——acge_text_embedding勇夺C-MTEB榜首

在人工智能的浪潮中&#xff0c;以GPT4、Claude3、Llama 3等大型语言模型&#xff08;LLM&#xff09;无疑是最引人注目的潮头。这些模型通过在海量数据上的预训练&#xff0c;学习到了丰富的语言知识和模式&#xff0c;展现了出惊人的能力。在支撑这些大型语言模型应用落地方面…

RTSP/Onvif视频监控平台EasyNVR如何提高匿名用户的用户名和密码安全性?

EasyNVR安防视频云平台是旭帆科技TSINGSEE青犀旗下支持RTSP/Onvif协议接入的安防监控流媒体视频云平台。平台具备视频实时监控直播、云端录像、云存储、录像检索与回看、告警等视频能力&#xff0c;能对接入的视频流进行处理与多端分发&#xff0c;包括RTSP、RTMP、HTTP-FLV、W…

tcp inflight 守恒算法背后的哲学

tcp inflight 守恒拥塞控制的正确性 很久以前我开始纠结 tcp 锯齿&#xff0c;很多年后我知道这叫 capacity-seeking&#xff0c;甚至说 tcp 属于 capacity-seeking protocol 的原因就是它早已深入人心的 aimd 行为&#xff0c;而该行为生成了 tcp 锯齿。 在消除锯齿&#xf…

Python-VBA函数之旅-input函数

目录 一、input函数的常见应用场景&#xff1a; 二、input函数使用注意事项&#xff1a; 三、如何用好input函数&#xff1f; 1、input函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、推荐阅读&#xff1a; 个人主页&#xff1a;神奇夜光杯-CSDN博…

hcia datacom课程学习(7):直连路由、静态路由

直连路由路由器接口上的网络&#xff08;接口配置了IP地址并且开启&#xff09;静态路由管理员手工添加的网络动态路由路由器之间动态学习形成的网络 1.直连路由 每当给路由器的一个接口配置了ip&#xff0c;路由表中就会产生对应的直连路由 配置路由接口ip的命令&#xff1…

web测试基础知识

目录 web系统的基础 web概念(worldwideweb) 网络结构 发展 架构 B/S C/S P2P 工作原理 静态页面 动态页面 web客户端技术 浏览器的核心--渲染引擎 web服务器端技术 web服务器 应用服务器 集群环境 数据库 案例-URL 协议类型 主机名 端口 IP地址 分类 …