Pytorch 学习路程 - 1:入门

目录

下载Pytorch

入门尝试

几种常见的Tensor

Scalar

Vector

Matrix

AutoGrad机制

线性回归尝试

使用hub模块


Pytorch是重要的人工智能深度学习框架。既然已经点进来,我们就详细的介绍一下啥是Pytorch

PyTorch

  • 希望将其代替 Numpy 来利用 GPUs 的威力;

  • 一个可以提供更加灵活和快速的深度学习研究平台。

下载Pytorch

不必着急担心我们下啥版本,Pytorch官网已经给出了一个良好的解决方案:

请根据自己的网站给出的方案进行选择!不要抄我的!

可以复制到Pycharm中,确定好自己的虚拟环境之后,就可以愉快的在终端执行网站推介的配置.

可以在Package包中选择自己的包管理:如果你的环境是conda环境,我个人推介使用conda来下(方便管理)

等待半个小时,我们下好了之后,,就可以使用这个代码跑一下:

在Pycharm的Python控制台上

import torch
torch.__version__

之后我们将会在控制台上尝试我们的代码,这里就不赘述了

入门尝试

我们随意的试一试一些API:

我们可以很轻松的创建一个矩阵:

torch.empty — PyTorch 2.2 documentation

x = torch.empty(5, 3)
x
tensor([[1.4767e+20, 1.6816e-42, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00]])

我们就会创建一个给定大小的torch:他的值是未初始化的(你可以反复执行查看结果,你会发现结果可能每一次都会发生变化)

我们可以很轻松的创建一个随机矩阵:

torch.rand — PyTorch 2.2 documentation

x = torch.rand(5, 3)
x
tensor([[0.7140, 0.1131, 0.6945],
        [0.8082, 0.6078, 0.5954],
        [0.9646, 0.6500, 0.8988],
        [0.4161, 0.1819, 0.3053],
        [0.1953, 0.3988, 0.9033]])

由此可见,他会随机的生成一些介于0和1之间的随机值

torch.zeros — PyTorch 2.2 documentation

x = torch.zeros(5, 3, dtype=torch.long)
x

将返回给我们一个全0的矩阵

我们还可以升级已有的数组结构:

torch.tensor — PyTorch 2.2 documentation

x = torch.tensor([5.5, 3])
x
tensor([5.5000, 3.0000])

当然可以使用size查看torch的大小

x.size()

还可以对之进行简单的操作:

y = torch.rand(5, 3)
x + y
# 等价操作:torch.add(x, y)
tensor([[1.1685, 1.4813, 1.1385],
        [1.4541, 1.4664, 1.4721],
        [1.5987, 1.1817, 1.3344],
        [1.2923, 1.8951, 1.8134],
        [1.8740, 1.7830, 1.7349]], dtype=torch.float64)

还可以同一般的Python那样进行索引

print(x)
x[:, 1]
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

还可以变换维度

torch.Tensor.view — PyTorch 2.2 documentation

PyTorch中的view( )函数相当于numpy中的resize( )函数,都是用来重构(或者调整)张量维度的,用法稍有不同。

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) 
print(x.size(), y.size(), z.size())

还支持同其他库的协同操作:

a = torch.ones(5)
b = a.numpy()
b
array([1., 1., 1., 1., 1.], dtype=float32)
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
b
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

几种常见的Tensor

torch.Tensor — PyTorch 2.2 documentation

我们的Tensor叫张量,回忆线性代数,我们的张量有维度,我们的维度可以从0上升到:

0: scalar       # 标量
1: vector       # 向量
2: matrix
3: n-dim tensor

Scalar

通常就是一个数值:

x = tensor(42.)
x

你就会发现结果实际上就是封装起来的一个数字:

tensor(42.)

使用dim方法可以查看这个张量的维度:

x.dim()
0

可以简单使用标量乘法,跟线性代数定义的乘法完全一致:

2 * x
tensor(84.)

对于标量,我们可以使用item方法提取里面的值

x.item()

但是建议判断item的维度选用这个方法,因为对于向量,这个方法会抛error

y = torch.tensor([3, 4])
y.item()
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[9], line 2
      1 y = torch.tensor([3, 4])
----> 2 y.item()
​
RuntimeError: a Tensor with 2 elements cannot be converted to Scalar

Vector

例如: [-5., 2., 0.],在深度学习中通常指特征,例如词向量特征,某一维度特征等

Matrix

我们深度学习的计算多涉及矩阵:

M = tensor([[1., 2.], [3., 4.]])
M
tensor([[1., 2.],
        [3., 4.]])

矩阵可以进行矩阵乘法,但是要求满足线性代数下矩阵的乘法规则:

N = tensor([1, 2, 3])
M.matmul(N)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[12], line 2
      1 N = tensor([1, 2, 3])
----> 2 M.matmul(N)
​
RuntimeError: size mismatch, got input (2), mat (2x2), vec (3)

5cd99a73f8ce4494ad86852e_arraychart.jpg (3540×3187) (webflow.com)

AutoGrad机制

深度解析 PyTorch Autograd:从原理到实践 - 知乎 (zhihu.com)

Pytorch autograd,backward详解 - 知乎 (zhihu.com)

参考这两个博客,我来写写我的理解。我们构建的是基于张量的函数算子:

$$
f = f(X, Y, Z, ...)
$$

现在,我们需要求导,首先就要思考,对于多张量的函数,跟多变量函数一样,一些变量是我们这次运算中需要被求导的,一些不是,这样,我们就需要使用Tensor的required_grad参数机制:

x = torch.randn(3,4,requires_grad=True)
x

这样我们的x在后续参与函数运算的时候,在我们反向传播的时候就会参与求导运算。

一些参数的解释

  • data: 即存储的数据信息

  • requires_grad: 设置为True则表示该Tensor需要求导

  • grad: 该Tensor的梯度值,每次在计算backward时都需要将前一时刻的梯度归零,否则梯度值会一直累加,这个会在后面讲到。

  • grad_fn: 叶子节点通常为None,只有结果节点的grad_fn才有效,用于指示梯度函数是哪种类型。例如上面示例代码中的y.grad_fn=<PowBackward0 at 0x213550af048>, z.grad_fn=<AddBackward0 at 0x2135df11be0>

  • is_leaf: 用来指示该Tensor是否是叶子节点。

现在我们引入函数算子:

b = torch.randn(3,4,requires_grad=True)
# print(b)
t = x + b
t

我们实际上完成的是两个张量的相加,现在我们就知道,t作为一个结果,发生了两个张量的相加:

tensor([[ 1.2804, -1.8381,  0.0068, -0.3126],
        [-0.4901,  1.5733, -1.1383,  1.4996],
        [ 1.9931, -0.7548, -1.1527, -1.1703]], grad_fn=<AddBackward0>)# 看后面这个,这个说明稍后我们反向传播的时候使用AddBackward算子

使用y.backward()进行反向传播,这个时候,我们如何查看参与运算的张量的梯度呢,答案是:

print(x.grad)
print(b.grad)

可以注意到:我们求一次y.backward(),这个结果就会累加一次。

注意到,一些张量不是我们定义出来的而是算出来的,代表性的就是t,反之剩下的是参与基础运算的x和b

print(x.is_leaf, b.is_leaf, t.is_leaf)
True True False

这样我们就不会对叶子向量求导了!他们就是基础的变量。

线性回归尝试

啥是线性回归呢,我的理解是:使用线性的函数(如果不理解,那就是y = kx + b)拟合数据。我们从简单的线性拟合来。

生成一组(x, y)

import numpy as np
x_values = [i for i in range(11)]
x_train = np.array(x_values, dtype=np.float32)
x_train = x_train.reshape(-1, 1)
x_train.shape
x_train
array([[ 0.],
       [ 1.],
       [ 2.],
       [ 3.],
       [ 4.],
       [ 5.],
       [ 6.],
       [ 7.],
       [ 8.],
       [ 9.],
       [10.]], dtype=float32)
y_values = [2*i + 1 for i in x_values]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1, 1)
y_train.shape
y_train
array([[ 1.],
       [ 3.],
       [ 5.],
       [ 7.],
       [ 9.],
       [11.],
       [13.],
       [15.],
       [17.],
       [19.],
       [21.]], dtype=float32)

现在我们使用torch框架下的线性回归:

import torch
import torch.nn as nn
class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  
​
    def forward(self, x):
        out = self.linear(x) # 向前传播
        return out

这样我们就完成了一个最简单的模型

input_dim = 1
output_dim = 1
​
model = LinearRegressionModel(input_dim, output_dim)
model
LinearRegressionModel(
  (linear): Linear(in_features=1, out_features=1, bias=True)
)
epochs = 1000           # 训练论数
learning_rate = 0.01    # 学习速率
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)   # 随机梯度下降
criterion = nn.MSELoss()    # 正则化惩罚系数

在这里我们进行训练

for epoch in range(epochs):
    epoch += 1
    # 注意转行成tensor
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)
​
    # 梯度要清零每一次迭代
    optimizer.zero_grad() 
​
    # 前向传播
    outputs = model(inputs)
​
    # 计算损失
    loss = criterion(outputs, labels)
​
    # 返向传播
    loss.backward()
​
    # 更新权重参数
    optimizer.step()
    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

我们可以这样得到预测的值:

predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
predicted

如何存取模型呢:

torch.save(model.state_dict(), 'model.pkl')
model.load_state_dict(torch.load('model.pkl'))

也可以使用GPU训练

import torch
import torch.nn as nn
import numpy as np
​
​
class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  
​
    def forward(self, x):
        out = self.linear(x)
        return out
​
input_dim = 1
output_dim = 1
​
model = LinearRegressionModel(input_dim, output_dim)
​
# 在这里,直接扔到GPU就行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
​
​
criterion = nn.MSELoss()
​
​
learning_rate = 0.01
​
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
​
epochs = 1000
for epoch in range(epochs):
    epoch += 1
    inputs = torch.from_numpy(x_train).to(device)
    labels = torch.from_numpy(y_train).to(device)
​
    optimizer.zero_grad() 
​
    outputs = model(inputs)
​
    loss = criterion(outputs, labels)
​
    loss.backward()
​
    optimizer.step()
​
    if epoch % 50 == 0:
        print('epoch {}, loss {}'.format(epoch, loss.item()))

使用hub模块

torch.hub — PyTorch 2.2 documentation

Pytorch Hub是一个帮助研究者实现模型再现、快速推理验证的预训练模型库与一套相关的API框架。支持远程从github上下载指定模型、上传与分享训练好的模型、支持从本地加载预训练模型、自定义模型。支持模型远程加载与本地推理、当前Pytorch Hub已经对接到Torchvision、YOLOv5、YOLOv8、pytorchvideo等视觉框架

人话:我们可以直接在操作这些API直接嫖设置好的模型直接用。

我们可以前往Pytorch Hub尝试,搜索你感兴趣的模型:来个例子,我们对deeplabv3_resnet101,就可以搜索到Tutorial:

Deeplabv3 | PyTorch

import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True)
model.eval()

这个时候他会下载模型(默认保存在用户文件夹下的C:/User/.cache/torch/下)

之后下载数据集:

# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/deeplab1.png", "deeplab1.png")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)

如果网络不好,请手动到地址下载!放到指定位置

然后处理它:

# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
# 定义transform算子
input_image = Image.open(filename)
input_image = input_image.convert("RGB")
preprocess = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 预处理
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
​
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')
​
with torch.no_grad():
    output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)

查看效果如何

# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
​
# plot the semantic segmentation predictions of 21 classes in each color
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
r.putpalette(colors)
​
import matplotlib.pyplot as plt
plt.imshow(r)
plt.show()

分类成功。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/566463.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Nginx 四层和七层代理

四层&#xff1a;通过报文中的目标地址和端口&#xff0c;加上负载均衡设备设置的服务器选择方式&#xff0c;决定最终选择的内部服务器&#xff0c;使用tcp、udp协议。 七层&#xff1a;"内容交换"&#xff0c;通过报文中真正有意义的应用层内容&#xff0c;加上负…

copilot无法登录,始终卡在登录界面,点击后循环回登录界面

现象&#xff1a;一直卡在登录界面 解决方法&#xff1a; 科学工具需要全局模式

尚硅谷-JavaSE阶段考试与面试题库

一、基础题 1&#xff09;用最有效的的方法算出2称以8等于几 答案&#xff1a;2<<3 2&#xff09;两个对象a和b&#xff0c;请问ab和a.equals(b)有什么区别&#xff1f; ab&#xff1a;比较对象地址 a.equals(b)&#xff1a;如果a对象没有重写过equals方法&#xff0c…

STM32F407,429参考手册(中文)

发布一个适用STM32F405XX、STM32F407XX、STM32F415XX、STM32F417XX、STM32F427XX、STM32F437XX的中文数据手册&#xff0c;具体内容见下图&#xff1a; 点击下载&#xff08;提取码&#xff1a;spnn&#xff09; 链接: https://pan.baidu.com/s/1zqjKFdSV8PnHAHWLYPGyUA 提取码…

ubuntu apt update:The repository ‘xxx‘ is not signed.报错解决办法(未解决)

文章目录 报错原因及解决办法 报错 rootjax:~# apt update Get:1 file:/var/cuda-repo-l4t-11-4-local InRelease [1575 B] Get:2 file:/var/cudnn-local-repo-ubuntu2004-8.4.1.50 InRelease [1575 B] Get:1 file:/var/cuda-repo-l4t-11-4-local InRelease [1575 B] Get:2 …

实时数仓选型

实时数仓选型 实时数仓选型第一版实时数仓选型第二版 实时数仓选型第一版 实时数仓分层: 计算框架:Flink;存储框架:消息队列(可以实时读取&可以实时写入)ODS:Kafka 使用场景:每过来一条数据,读取到并加工处理DIM: HBase 使用场景:事实表会根据主键获取一行维表数据(1.永…

封装形式,进化,DIP封装及键出方法

本文主要讨论芯片封装的主要形式&#xff0c;概念&#xff0c;以及芯片封装的演化&#xff0c;最后以DIP封装为例&#xff0c;分析键出方式。 1-IC封装的形式 IC 封装是指将组成电子器件的各个组成部分&#xff0c;包括半导体芯片、基板、管脚连接线等&#xff0c;按照要求布局…

ES中文检索须知:分词器与中文分词器

ElasticSearch (es)的核心功能即为数据检索&#xff0c;常被用来构建内部搜索引擎或者实现大规模数据在推荐召回流程中的粗排过程。 ES分词 分词即为将doc通过Analyzer切分成一个一个Term&#xff08;关键字&#xff09;&#xff0c;es分词在索引构建和数据检索时均有体现&…

众筹商城源码 众筹农业平台 农业乘科技富强之路 线上农业众筹 养殖系统 种植系统源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 前端是编译后的&#xff0c;后端PHP&#xff0c;带商城&#xff0c;详情看下图 特点和功能&#xff1a; 用户管理&#xff1a;包括注册、登录、个人信息管理等。 项目创建与展示&…

Keil中编译无error(有warning),但程序无法运行的一种情况

问题 void Run_Led(void) {HAL_GPIO_TogglePin(RUN_LED_GPIO_Port, RUN_LED_Pin);Delay_ms(500); }void StartDefaultTask(void *argument) {/* USER CODE BEGIN StartDefaultTask */char c;/* Infinite loop */for(;;){while(1) { Run_Led;}...}非常简单的一个程序&#xf…

windows10环境下conda迁移到linux环境

网上给出的方案错误百出&#xff0c;记录一下正确方案。 1 创建yaml文件 创建到终端所在路径下 conda activate 环境名 conda env export --no-build >环境名.yaml2 新操作系统中创建新的conda环境 conda env create -f 环境名.yaml3 删除不兼容的包 终端报错 Could n…

垃圾焚烧发电:从国资到专业公司,运营模式新变革|中联环保圈

近日&#xff0c;云南富源县生活垃圾焚烧发电项目运营管理技术服务招标引发广泛关注&#xff0c;与此同时&#xff0c;众多垃圾焚烧发电项目也纷纷启动了运管工作的招标。值得注意的是这些项目的招标人均为当地国资&#xff0c;且其中多数缺乏项目的运营经验。 在垃圾焚烧发电行…

Spring Boot 中Mybatis使用Like的使用方式和注意点

说明 模糊查询在项目中还是经常使用的&#xff0c;本文就简单整理Mybatis中使用Like进行模糊查询的几种写法以及一些常见的问题。 使用Springboot简单配置一下Mybatis&#xff0c;然后进行说明。Springboot集成Mybatis这里就不做介绍了&#xff0c;这里我们主要介绍一下在mybat…

物理隔离条件下的数据安全导入导出方案,哪种最安全可控?

数据安全在当今信息化社会中扮演着至关重要的角色&#xff0c;尤其像政府、军工等单位&#xff0c;有比较多的核心数据要保护&#xff0c;一旦出现数据泄漏&#xff0c;将造成不可估量的后果。因此为了保护数据安全&#xff0c;政府、军工等单位一般会采取纯物理隔离&#xff0…

离散型制造行业智能工厂解决方案,助力国家新智产业升级

离散型制造行业智能工厂标准解决方案 离散型制造行业的智能工厂解决方案是推动国家智能制造产业升级的关键。 1. 集中优势资源&#xff1a;实施攻关计划&#xff0c;瞄准关键核心技术和重点产业进行定向突破&#xff0c;特别是在集成电路(IC)、AI、生物医药等领域。2. 国家创…

CentOS 7虚拟机配置静态IP地址(一)

IP地址的配置 以下几个地址需要记住&#xff0c;在配置中使用 &#xff08;1&#xff09;查看MAC地址&#xff08;点击菜单虚拟机-设置-网络适配器-高级-记住MAC地址&#xff09; &#xff08;2&#xff09;查看子网掩码和网关IP&#xff08;点击菜单编辑-虚拟网络编辑器-选择…

Rust入门-所有权

一、为什么、是什么、怎么用 1、为什么Rust要提出一个所有权和借用的概念 所有的程序都必须和计算机内存打交道&#xff0c;如何从内存中申请空间来存放程序的运行内容&#xff0c;如何在不需要的时候释放这些空间&#xff0c;成为所有编程语言设计的难点之一。 主要分为三种…

MemFire解决方案-政企数据库云服务解决方案

方案背景 随着越来越多的政府部门/企事业单位完成数字化转型升级&#xff0c;新技术的应用日益普遍&#xff0c;对系统并发服务能力的需求不断提高。办公OA、档案、门户、监控、财务、ERP、订单等各类系统对数据库的要求越来越苛刻&#xff0c;很多企业/政府部门都面临如下挑战…

Unity的Animator Animation的使用攻略

Animator 动画控制器 Animation 动画 动画片段 .anin 一、创建Animator 创建动画控制器 模型添加Animator组件 把控制器和模型绑定 二、创建动画 进入动画界面 创建动画片段anin 动画窗口分析 制作动画 点击录制&#xff0c; 移动子对象&#xff0c;在视窗 通过移动线来编辑关…

第53篇:算法的硬件实现<四>

Q&#xff1a;本期我们在DE2-115开发板上实现二进制搜索算法电路&#xff0c;查找数据A在数组中的位置。 A&#xff1a;使用SW[9]设定开始查找信号&#xff0c;数据A由SW[7:0]设定&#xff0c;KEY[0]设定为复位信号&#xff0c;板载50MHz时钟作为电路的时钟输入&#xff0c;确…