负载均衡的原理及算法

在这里插入图片描述

一、定义

负载均衡(Load Balancing)是一种计算机网络和服务器管理技术,旨在分配网络流量、请求或工作负载到多个服务器或资源,以确保这些服务器能够高效、均匀地处理负载,并且能够提供更高的性能、可用性和可扩展性。

二、负载均衡算法

1.Round Robin-轮询

轮询,顾名思义,把请求按顺序分配给每个服务器,然后重复执行这个顺序,进行请求分配。如下图:

在这里插入图片描述

如上图,有3台服务器,分别为服务器A、服务器B和服务器C,当客户端有请求过来时,请求会按照 A->B->C->A->B->C->… 这种轮询的顺序分配给各个服务器。

(1) 原理:

  • 服务器列表:维护一个服务器列表,有服务器加入/剔除时,相应的更新服务器列表;
  • 服务器游标:记录需要处理下一个请求的服务器;
  • 请求分发:新请求到达,选择当前服务器来处理该请求,然后服务器游标+1;
  • 循环:不断重复步骤3,以确保每个服务器都有机会处理请求;

(2) 算法实现

方法1:

轮询算法的实现非常简单,可以定义一个服务器的列表和当前服务器指针,如下伪代码:

# 服务器列表
servers = ["ServerA", "ServerB", "ServerC"]
# 当前服务器
current_server = 0
# 轮询算法
if(req):
    # 选择当前服务器来处理请求
    process_request(servers[current_server])
    # 将当前服务器移到服务器列表的末尾

    if current_server == length(servers):
        current_server = 0
    else:
      # 指针+1
      current_server += 1

当客户端有新的请求到达时,负载均衡器会选择服务器指针(current_server)指向的服务器来处理请求,然后将当前服务器指针移到下一个服务器(current_server += 1), 如果 current_server=服务器总数,则把current_server设置为0,进行下一场轮询。

方法2: 循环列表

循环列表是一个环形数据结构,用于按照顺序循环遍历服务器列表。当指针指向列表的末尾时,指针会回到列表的开头,从而实现循环。如下伪代码:

servers = ["Server1", "Server2", "Server3"]  # 服务器列表
current_index = 0  # 当前服务器的索引

def get_next_server(self):
      if not self.servers:
          return None
      # 获取当前服务器
      current_server = self.servers[self.current_index]
      # 更新索引,移到下一个服务器
      self.current_index = (self.current_index + 1) % len(self.servers)

      return current_server

# 创建一个包含服务器的列表
servers_list = ["ServerA", "ServerB", "ServerC"]


# 模拟请求的处理过程
if(req):  # 假设有5个请
    next_server = get_next_server()
    if next_server is not None:
        process_request(next_server)
    else:
        print("No available servers.")

(3) 优缺点

优点:简单,实现成本低;

缺点:

  • 无法根据服务器的负载情况来分配请求,当服务器的负载不均衡时,轮询算法无法自动调整。
  • 当服务器down机了,轮询算法无法自动剔除该服务器,导致请求会被转发到down机的服务器上。
servers = ["Server1", "Server2", "Server3"]  # 服务器列表
current_index = 0  # 当前服务器的索引


def get_next_server(self):
      if not self.servers:
          return None
      # 获取当前服务器
      current_server = self.servers[self.current_index]
      # 更新索引,移到下一个服务器
      self.current_index = (self.current_index + 1) % len(self.servers)


      return current_server


# 创建一个包含服务器的列表
servers_list = ["ServerA", "ServerB", "ServerC"]




# 模拟请求的处理过程
if(req):  # 假设有5个请
    next_server = get_next_server()
    if next_server is not None:
        process_request(next_server)
    else:
        print("No available servers.")

(4) 适用场景

对服务器没有什么特别的要求,就可以采用轮询算法,比如:Nginx 默认适用的就是轮询算法。

2.Weighted Round Robin - 加权轮询

加权轮询算法是轮询算法的一种改进,只不过在负载时会根据服务器的权重来分配请求,权重越大,分配的请求就会越多。如下图:
在这里插入图片描述

(1) 算法实现

实现算法和轮询很类似,只不过会根据权重在列表中放置不同比例的服务器,同时定义一个服务器的列表和当前服务器指针,如下伪代码:

# 服务器列表
servers = ["ServerA", "ServerA", "ServerA", "ServerB","ServerB", "ServerC"]
# 当前服务器
current_server = 0
# 轮询算法
if(req):
    # 选择当前服务器来处理请求
    process_request(servers[current_server])
    # 将当前服务器移到服务器列表的末尾

    if current_server == length(servers):
        current_server = 0
    else:
      # 指针+1
      current_server += 1

当客户端有新的请求到达时,负载均衡器会选择服务器指针(current_server)指向的服务器来处理请求,然后将当前服务器指针移到下一个服务器(current_server += 1), 如果 current_server=服务器总数,则把current_server设置为0,进行下一场轮询。

(2) 优缺点

优点:可以人为配置权重,为处理能力强的服务器配置高的权重,处理能力弱的配置低的权重,从而实现负载均衡。

缺点:无法应对服务器动态变化的情况,比如:服务器down机了,无法自动剔除该服务器,导致请求会被转发到down机的服务器上。

(3) 适用场景

服务器的处理能力不一致,可以采用加权轮询算法。

比如:有3台服务器,服务器A(4C8G,4个CPU,8G内存),服务器B(2C4G,2个CPU,4G内存),服务器C(1C2G,1个CPU,2G内存),那么可以配置服务器A的权重为4,服务器B的权重为2,服务器C的权重为1。

3.Least Connections - 最小连接数

最小连接数,是指把请求分配给当前连接数最少的服务器,以确保负载更均匀。如下图:

在这里插入图片描述

上图中有 3台服务器,服务器A(连接数10)、服务器B(连接数100)和服务器C(连接数1000),连接数最少的服务器A分配的Req比其他服务器多。

(1) 原理

  • 维护一个所有服务器和连接数的字典(Map);
  • 当新的请求到达时,负载均衡器会检查服务器列表中当前连接数最少的服务器;
  • 请求将被分配给具有最少连接数的服务器,处理请求后该服务器的连接数+1;
  • 如果有多台服务器具有相同的最小连接数,算法可以使用其他标准来选择其中一台,如加权等。

(2) 算法实现

如下伪代码:

# 创建一个包含服务器及其连接数的字典
servers = {"Server A": 5, "Server B": 3, "Server C": 4}


def get_server_with_least_connections():
  # 找到当前连接数最少的服务器
  min_connections = min(servers.values())

  # 找到具有最小连接数的服务器
  for server, connections in servers.items():
    if connections == min_connections:
      return server

# 选择连接数最少的服务器
def assign_request(self):
  # 获取具有最小连接数的服务器
  server = get_server_with_least_connections()
  if server is not None:
    # 模拟分配请求给服务器,增加连接数
    self.servers[server] += 1
    return server
  else:
    return "No available servers."

# 模拟请求的处理过程
if req:  # 假设有请求
  assigned_server = load_balancer.assign_request()

(3) 优缺点

优点:

  • 动态负载均衡:它根据服务器的当前负载情况来做出决策,这使得它能够有效地分配请求给当前连接数最少的服务器,从而确保了服务器资源的最佳利用。
  • 适应性强:这个算法适用于服务器性能不均匀的情况,因为它关注的是连接数,而不是服务器的硬件配置或性能评估。
  • 避免过载:通过将新请求分配给连接数最少的服务器,”最小连接数”算法有助于防止某些服务器被过度加载,从而提高了系统的稳定性和性能。
  • 自动恢复:如果某台服务器由于故障或重启而导致连接数清零,该算法会自动开始将新请求分配给该服务器,以实现自动恢复。

缺点:

  • 连接数不一定代表负载:”最小连接数”算法假设连接数与服务器的负载成正比,但这并不总是准确。有时候,某台服务器的连接数可能很高,但仍然能够处理更多的请求,而另一台连接数较低的服务器可能已经达到了其性能极限。
  • 不适用于长连接:如果服务器上有大量长期活跃的连接,例如WebSocket连接,该算法可能不太适用,因为长连接不同于短暂的HTTP请求,连接数的统计可能会产生误导。
  • 无法解决服务器性能差异:虽然”最小连接数”算法可以平衡连接数,但它无法解决服务器硬件性能差异的问题。在这种情况下,可能需要其他负载均衡算法,如加权轮询,来更好地适应性能差异。

(4) 适用场景

通过服务器连接数来做负载均衡的场景。到目前为止,还没有遇到生产上使用这种算法的场景。

4.IP/URL Hash - IP/URL 散列

IP/URL 散列算法是一种根据客户端 IP 地址或 URL 来分配请求的负载均衡算法,这样相同的IP或者URL就会负载到相同的服务器上。

(1) 原理

  • 将客户端 IP 地址或 URL 散列到服务器列表中,
  • 然后将请求分配给散列值对应的服务器。

如下图:有3台服务器,分别为服务器A、服务器B和服务器C,当相同IP的客户端请求会被负载到形同的服务器列中。
在这里插入图片描述

(2) 优缺点

优点:

  • 稳定性:IP/URL Hash
    算法可以确保相同的客户端请求总是被分发到相同的服务器上。这可以提高应用程序的稳定性,因为客户端的会话数据在同一服务器上保持一致。
  • 适用于会话保持:当应用程序需要在多次请求之间保持会话状态时,IP/URL Hash
    算法非常有用。客户端在一次请求中选择的服务器会在后续请求中保持一致,确保会话数据不会丢失。
  • 负载均衡:IP/URL Hash 算法可以将特定的客户端请求均匀地分配到多个服务器上,从而实现基本的负载均衡,避免了某些服务器被过度请求。

缺点:

  • 不适用于动态环境:IP/URL Hash 算法基于客户端的 IP 地址或 URL,一旦客户端 IP 或请求的 URL
    发生变化,请求可能会被分配到不同的服务器上,导致会话数据丢失或不一致。
  • 不考虑服务器负载:IP/URL Hash 算法不考虑服务器的当前负载情况。如果某个服务器的负载过高,IP/URL Hash
    无法动态地将请求分发到负载较低的服务器上。

(3) 适用场景

  • 静态环境:在静态环境中,即客户端的 IP 地址或请求的 URL 不经常变化的情况下,IP/URL Hash 算法可以提供稳定的负载均衡。
  • 少数服务器的负载均衡:当服务器数量相对较少且不太容易动态扩展时,IP/URL Hash 算法可以用于基本的负载均衡。

5.Least Response Time - 最短响应时间

最短响应时间就是指:处理请求的响应时间最少的服务器,获取的请求就越多。直白讲就是随速度快,随就干的多。如下图:

在这里插入图片描述

(1) 适用场景

负载均衡的所有服务器,处理能力相差比较大。比如:有3台服务器,服务器A(4C8G,4个CPU,8G内存),服务器B(2C4G,2个CPU,4G内存),服务器C(1C2G,1个CPU,2G内存), 那么就可以采用这种算法,这样可以根据服务器的处理来实现动态负载。

(2) 优缺点

优点:可以充分发挥各个服务器的性能,提高服务器的利用率。

缺点:饥饿问题。比如,服务器A的性能最好,处理速度最快,那么所有的请求都会被分配到服务器A,这样服务器B和服务器C就会一直处于饥饿状态,无法处理请求。这样也就会产生不公平。

(3) 算法实现

如下伪代码:记录每台服务器以及响应时间,然后找到响应时间最短的服务器,将请求分配到该服务器上。

# 服务器列表,每个服务器表示为一个字典,包含服务器的唯一标识符和响应时间
servers = [
    {"id": "serverA", "response_time": 10},
    {"id": "serverB", "response_time": 30},
    {"id": "serverC", "response_time": 100},
    # 添加更多服务器
]

# 找到响应时间最短的服务器
def find_least_response_time_server(servers):

    # 初始选择第一个服务器为最短响应时间服务器
    least_response_time_server = servers[0]

    # 遍历服务器列表,找到最短响应时间的服务器
    for server in servers:
        if server["response_time"] < least_response_time_server["response_time"]:
            least_response_time_server = server

    return least_response_time_server

# 客户端请求到来时,选择最短响应时间的服务器
def handle_client_request():
    least_response_time_server = find_least_response_time_server(servers)
    if req:
      least_response_time_server.handle_client_request()

需要说明的是:这只是一个简单的示例,实际的负载均衡系统可能需要更复杂的逻辑,包括定期更新服务器的响应时间、处理服务器故障等。此外,要将这种算法应用于实际生产环境,可能需要使用专门的负载均衡软件或硬件,这些工具可以自动管理服务器并提供更多功能。

(4) 适用场景

交通控制系统:在城市交通控制系统中,需要及时响应交通信号、路况和车辆检测等信息。最短响应时间算法可以帮助确保交通信号及时适应交通流量的变化。

三、总结

本文分析了五种常见的负载均衡算法,算法的实现都比较简单,在实际的生产环境中,我们可以根据自己的业务场景来选择合适的负载均衡算法。

另外,除了上面 5种算法外,还有一种其他的负载均衡算法,比如:

  • 一致性哈希:Consistent Hashing,可以参考文章:hash & 一致性hash,如何选择?
  • 加权最少连接:Weighted Least Connections,在Weighted Least Connections基础上再加权重。

在实际生产中,我们可能并不需要自己去实现这些算法,而会选择使用一些现有的框架,比如:nginx、lvs、haproxy等, 但是万变不离其宗,了解这些负载均衡算法可以帮组我们更好的去理解框架。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565743.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV-复数矩阵点乘ComplexMatrixDotMultiplication

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 需求说明 一般用到FFT&#xff0c;就涉及到复数的计算&#xff0c;为了便于调用&#xff0c;我自行封装了一个简单的复数矩阵点乘…

服务器被CC攻击怎么办

遇到CC攻击时&#xff0c;可采取以下措施&#xff1a;限制IP访问频率、启用防DDoS服务、配置Web应用防火墙、增加服务器带宽、使用负载均衡分散请求压力。 处理服务器遭遇CC攻击的方法如下&#xff1a; 1. 确认攻击 你需要确认服务器是否真的遭受了CC攻击&#xff0c;这可以…

Day10-Java进阶-泛型数据结构(树)TreeSet 集合

1. 泛型 1.1 泛型介绍 package com.itheima.generics;import java.util.ArrayList; import java.util.Iterator;public class GenericsDemo1 {/*泛型介绍 : JDK5引入的, 可以在编译阶段约束操作的数据类型, 并进行检查注意 : 泛型默认的类型是Object, 且只能接引用数据类型泛型…

【STM32+HAL+Proteus】系列学习教程3---GPIO输出模式(LED流水灯、LED跑马灯)

实现目标 1、掌握GPIO 输出模式控制 2、学会STM32CubeMX软件配置GPIO 3、具体目标&#xff1a;1、开发板4个LED实现流水灯&#xff1b;2、开发板4个LED实现跑马灯灯。 一、STM32 GPIO 概述 1、GPIO定义 GPIO&#xff08;General-purpose input/output&#xff09;是通用输入…

牛客NC238 加起来和为目标值的组合【中等 DFS C++、Java、Go、PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/172e6420abf84c11840ed6b36a48f8cd 思路 本题是组合问题&#xff0c;相同元素不同排列仍然看作一个结果。 穷经所有的可能子集&#xff0c;若和等于target&#xff0c;加入最终结果集合。 给nums排序是为了方便…

Ai-WB2 系列模组SDK接入亚马逊云

文章目录 前言一、准备二、亚马逊云物模型建立1. 注册亚马逊账号&#xff0c;登录AWS IoT控制台&#xff0c;[注册地址](https://aws.amazon.com/cn/)2. 创建好之后点击登录3. 创建物品以及下载证书 三、连接亚马逊云demo获取以及配置1. 下载源码2. 按照顺序执行下面指令3. 修改…

IDEA 2021.3.3最新激活破解教程(可激活至2099年,亲测有效)

1、ja-netfilter-all Windows 系统&#xff0c;点击运行 install-current-user.vbs 脚本&#xff0c;为当前用户安装破解补丁 截图是window环境下的激活方式 运行此补丁大约花费几分钟&#xff0c;点击 确定&#xff0c; 等待 Done 完成提示框出现&#xff0c;到这里&#xf…

HarmonyOS ArkUI实战开发-页面跳转(Router、Ability)

页面跳转可以分为页面内跳转和页面间跳转&#xff0c;页面内跳转是指所跳转的页面在同一个 Ability 内部&#xff0c;它们之间的跳转可以使用 Router 或者 Navigator 的方式&#xff1b;页面间跳转是指所跳转的页面属与不同的 Ability &#xff0c;这种跳转需要借助 featureAbi…

51单片机数字温度报警器_DS18B20可调上下限(仿真+程序+原理图)

数字温度报警器 1 **主要功能&#xff1a;*****\*资料下载链接&#xff08;可点击&#xff09;&#xff1a;\**** 2 **仿真图&#xff1a;**3 **原理图&#xff1a;**4 **设计报告&#xff1a;**5 **程序设计&#xff1a;**主函数外部中断函数DS18B20驱动 6 讲解视频7 **资料清…

完美运营版商城/拼团/团购/秒杀/积分/砍价/实物商品/虚拟商品等全功能商城

源码下载地址&#xff1a;完美运营版商城.zip 后台可以自由拖曳修改前端UI页面 还支持虚拟商品自动发货等功能 挺不错的一套源码 前端UNIAPP 后端PHP 一键部署版本

Linux 终止进程命令—sudo kill -9 <进程号>

一、查找占用端口的进程&#xff1a;使用以下命令找到占用了该端口的进程&#xff1a; sudo lsof -i :<端口号> 该命令将显示占用该端口的进程的详细信息。 二、结束占用端口的进程&#xff1a;根据上一步得到的进程信息&#xff0c;使用以下命令结束该进程&#xff1a…

CSS-vminvmax单位

vmin 和 vmax 单位 vmin 是相对于视口宽度和高度中较小值进行计算&#xff0c;它的值为视口宽度和高度中的较小值的百分比。 例如&#xff0c;如果视口宽度为 800px&#xff0c;高度为 1000px&#xff0c;那么 1vmin 等于 8px&#xff08;800px 的 1%&#xff09;。 vmax 是…

【Linux】权限(shell运行原理、概念,Linux权限)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/qinjh_/category_12625432.html 目录 shell命令以及运行原理 创建和删除用户 创建新普通用户 删除用户 Linux权…

【bug】使用mmsegmentaion遇到的问题

利用mmsegmentaion跑自定义数据集时的bug处理&#xff08;使用bisenetV2&#xff09; 1. ValueError: val_dataloader, val_cfg, and val_evaluator should be either all None or not None, but got val_dataloader{batch_size: 1, num_workers: 4}, val_cfg{type: ValLoop}, …

Elasticsearch单机部署(Linux)

1. 准备环境 本文中Elasticsearch版本为7.12.0&#xff0c;JDK版本为1.8.0&#xff0c;Linux环境部署。 扩展&#xff1a; &#xff08;1&#xff09;查看Elasticsearch对应的常用的jdk版本如下&#xff1a;&#xff08;详情可看官网的支持一览表&#xff09; Elasticsearch a…

CTF网络安全大赛详情

网络安全已成为现代社会的一个关键挑战&#xff0c;随着互联网技术的飞速发展&#xff0c;从个人隐私保护到国家安全&#xff0c;网络安全的重要性日益突显。为了应对这一挑战&#xff0c;CTF&#xff08;Capture The Flag&#xff0c;中文&#xff1a;夺旗赛&#xff09;应运而…

03-JAVA设计模式-命令模式

命令模式 什么是命令模式 命令模式&#xff08;Command Pattern&#xff09;是一种行为设计模式&#xff0c;它将请求封装为对象&#xff0c;从而使你可用不同的请求把客户端与请求的处理者解耦,也称动作模式或事物模式。 在命令模式中&#xff0c;命令对象封装了接收者对象…

Hive架构原理

Hive Hive 的架构是设计用于在大数据环境下进行数据仓库操作和分析的系统。它建立在 Hadoop 生态系统之上&#xff0c;利用 Hadoop 的存储&#xff08;HDFS&#xff09;和计算&#xff08;MapReduce、Tez、Spark 等&#xff09;能力。 1. 元数据存储&#xff08;Metastore&am…

计算机网络-IS-IS链路状态数据库同步

在建立IS-IS邻接关系之后&#xff0c;路由器开始发送LSP报文进行链路状态数据库进行同步。 一、链路状态数据库同步 LSP&#xff08; Link State PDU&#xff0c;链路状态报文&#xff09; 用于交换链路状态信息。LSP分为两种&#xff1a;Level–1 LSP和Level–2 LSP。Level–1…

前端入门:HTML(列表和边框案例)

1.列表知识&#xff1a; list-style-position有两个值&#xff0c;分别是inside&#xff0c;outside&#xff0c;分别表示在标签里面和在标签外面。 2.案例&#xff1a; 源代码&#xff1a; html: <body> <div class"bigBox"> <div>在线解答问题…