【数据结构】二叉树链式结构的实现《遍历,实现》(题库+解析+源码)

前言

二叉树的学习离不开对堆的理解,这是上篇堆的传送门

http://t.csdnimg.cn/F6Jp3

1.二叉树链式结构的实现

1.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二 叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树 操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{
 BTDataType _data;
 struct BinaryTreeNode* _left;
 struct BinaryTreeNode* _right;
}BTNode;
BTNode* CreatBinaryTree()
{
 BTNode* node1 = BuyNode(1);
 BTNode* node2 = BuyNode(2);
 BTNode* node3 = BuyNode(3);
 BTNode* node4 = BuyNode(4);
 BTNode* node5 = BuyNode(5);
 BTNode* node6 = BuyNode(6);
 
 node1->_left = node2;
 node1->_right = node4;
 node2->_left = node3;
 node4->_left = node5;
 node4->_right = node6;
 return node1;
}

这是比较基础的二叉树创建,大家如果在做二叉树OJ题的时候也可以选择运用此方法手搓二叉树来进行调试

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。

再看二叉树基本操作前,再回顾下二叉树的概念,

二叉树是: 1. 空树 2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

1.2二叉树的遍历

1.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉 树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历 是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。

2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为 根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

	//前序
void PrevOrder(BTNode* root)
{
	if (root == NULL)
		return;
	printf("%d", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}
	//中序
void InOrder(BTNode* root)
{
	if (root == NULL)
		return;
	PrevOrder(root->left);
	printf("%d", root->val);
	PrevOrder(root->right);
}
	//后序
void PostOrder(BTNode* root)
{
	if (root == NULL)
		return;
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d", root->val);

}

前序遍历结果:1 2 3 4 5 6 中序遍历结果:3 2 1 5 4 6 后序遍历结果:3 2 5 6 4 1

1.2.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

void LevelOrder(BTNode* root)	//创建链表放入二叉树
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%d", front->val);
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);
		QueuePop(&q);
	 }
	printf("\n");
	QueueDestroy(&q);
}

练习

请写出下面的前序/中序/后序/层序遍历

选择题

1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为( )
A ABDHECFG
B ABCDEFGH
C HDBEAFCG
D HDEBFGCA
2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()
A E
B F
C G
D H
3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为____。
A adbce
B decab
C debac
D abcde
4.某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列
为
A FEDCBA 
B CBAFED
C DEFCBA
D ABCDEF

选择题答案

1.A
2.A
3.D
4.A

1.3 节点个数以及高度等

// 二叉树节点个数
int TreeSize(BTNode* root)
{
	return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->left)+1;

}
// 二叉树叶子节点个数
int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->right == NULL && root->right == NULL)
	{
		return 1;
	}
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);

}
// 二叉树第k层节点个数

int TreeKLevel(BTNode* root,int k)
{
	assert(k > 0);
	if (root == NULL)
	{
		return 0;
	}
	if (k = 1)
	{
		return 1;
	}
	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}


// 二叉树查找值为x的节点
BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
	{
		return;
	}
	if (root->val == x)
	{
		return root;
	}
	BTNode* ret = TreeFind(root->left, x);
	if (ret)
	{
		return ret;
	}
	ret = TreeFind(root->right, x);
	if (ret)
	{
		return ret;
	}
	return NULL;
}

1.4 二叉树基础oj练习

1. 单值二叉树。Oj链接965. 单值二叉树

2. 检查两颗树是否相同。OJ链接100. 相同的树

3. 对称二叉树。OJ链接101. 对称二叉树

4. 二叉树的前序遍历。 OJ链接144. 二叉树的前序遍历

5. 二叉树中序遍历 。OJ链接94. 二叉树的中序遍历

6. 二叉树的后序遍历 。OJ链接145. 二叉树的后序遍历

7. 另一颗树的子树。OJ链接572. 另一棵树的子树

1.5 二叉树的创建和销毁

二叉树遍历_牛客题霸_牛客网 (nowcoder.com)


// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		if (front == NULL)
			break;
		QueuePush(&q, front->left);
		QueuePush(&q, front->right);

		QueuePop(&q);
	}
	//层序遇到空节点,在遇到那就不是完全二叉树
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front != NULL)
		{
			QueueDestroy(&q);
			printf("false");
			return false;
		}

	}

	printf("\n");
	QueueDestroy(&q);
	printf("true");
	return true;
}

// 二叉树销毁
void TreeDestroy(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	TreeDestroy(root->left);
	TreeDestroy(root->right);
	free(root);

}

//树高度
int fmax(int x, int y)
{
	return x > y ? x : y;

}
int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	return fmax(TreeHeight(root->left), TreeHeight(root->right))+1;
}

完整代码

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <malloc.h>
#include <assert.h>


typedef struct BinaryTreeNode
{
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	int val;
}BTNode;

#include "Queue.h";



BTNode* BuyNode(int x)
{
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	node->val = x;
	node->left = NULL;
	node->right = NULL;
}
	//前序
void PrevOrder(BTNode* root)
{
	if (root == NULL)
		return;
	printf("%d", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}
	//中序
void InOrder(BTNode* root)
{
	if (root == NULL)
		return;
	PrevOrder(root->left);
	printf("%d", root->val);
	PrevOrder(root->right);
}
	//后序
void PostOrder(BTNode* root)
{
	if (root == NULL)
		return;
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d", root->val);

}

//一般方式来计算节点个数
//int size = 0;
//
//int TreeSize(BTNode* root)
//{
//	if (root == NULL)
//	{
//		return 0;
//	}
//	else
//		++size;
//	TreeSize(root->left);
//	TreeSize(root->right);
//	return size;
//}
// 
// 二叉树节点个数
int TreeSize(BTNode* root)
{
	return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->left)+1;

}
// 二叉树叶子节点个数
int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->right == NULL && root->right == NULL)
	{
		return 1;
	}
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);

}
// 二叉树第k层节点个数

int TreeKLevel(BTNode* root,int k)
{
	assert(k > 0);
	if (root == NULL)
	{
		return 0;
	}
	if (k = 1)
	{
		return 1;
	}
	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}


// 二叉树查找值为x的节点
BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
	{
		return;
	}
	if (root->val == x)
	{
		return root;
	}
	BTNode* ret = TreeFind(root->left, x);
	if (ret)
	{
		return ret;
	}
	ret = TreeFind(root->right, x);
	if (ret)
	{
		return ret;
	}
	return NULL;
}

// 二叉树销毁
void TreeDestroy(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	TreeDestroy(root->left);
	TreeDestroy(root->right);
	free(root);

}
void TestTree1(BTNode* node1)
{
	PrevOrder(node1);
	printf("\n");
	InOrder(node1);
	printf("\n");
	PostOrder(node1);
	printf("\n");
	printf("%d", TreeLeafSize(node1));

	TreeDestroy(node1);
	node1 = NULL;
}

void TestTree2(BTNode* node1)
{
	BTNode* a =TreeFind(node1, 3);
	printf("%p",a);
	int BinaryTreeComplete(node1);
}
//层序遍历
void LevelOrder(BTNode* root)	//创建链表放入二叉树
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%d", front->val);
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);
		QueuePop(&q);
	 }
	printf("\n");
	QueueDestroy(&q);
}

// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		if (front == NULL)
			break;
		QueuePush(&q, front->left);
		QueuePush(&q, front->right);

		QueuePop(&q);
	}
	//层序遇到空节点,在遇到那就不是完全二叉树
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		if (front != NULL)
		{
			QueueDestroy(&q);
			printf("false");
			return false;
		}

	}

	printf("\n");
	QueueDestroy(&q);
	printf("true");
	return true;
}
//树高度
int fmax(int x, int y)
{
	return x > y ? x : y;

}
int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	return fmax(TreeHeight(root->left), TreeHeight(root->right))+1;
}

void TestTree3(BTNode* node1)
{
	BinaryTreeComplete(node1);
}
	
void TestTree4(BTNode* node1)
{
	printf("%d", TreeHeight(node1));
}

int main()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	
	node1->left = node2;
	node1->right = node4;

	node2->left = node3;
	node2->right = node4;
	node4->left = node5;
	node4->right = node6;
	TestTree4(node1);


}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565602.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux中inode号与日志分析

一.inode号 1.inode表结构 元信息&#xff1a;每个文件的属性信息&#xff0c;比如&#xff1a;文件的大小&#xff0c;时间&#xff0c;类型&#xff0c;权限等&#xff0c;称为文件的元数据(meta data 元信息 ) 元数据是存放在inode&#xff08;index node&#xff09;表中…

python基础知识二(标识符和关键字、输出、输入)

目录 标识符和关键字&#xff1a; 什么是标识符&#xff1f; 1. 标识符 2. 标识符的命名规则 什么是关键字&#xff1f; 1. 关键字 2. 关键字的分类 标识符和关键字的区别&#xff1a; ​​​输出&#xff1a; 1. 普通的输出 2. 格式化输出 格式化操作的目的&#…

【电控笔记6.3】采样-Z转换-零阶保持器

本质 数字转模拟:零阶保持器 采样 z-1所描述的物理意义即为延迟T时间的拉氏转换e-sT 信号采样延时

AI音乐:探索变现之路的新篇章

随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;已经渗透到我们生活的方方面面&#xff0c;音乐领域也不例外。AI音乐作为一种新兴的音乐创作方式&#xff0c;正逐渐改变着传统音乐产业的格局。然而&#xff0c;如何将AI音乐变现&#xff0c;成为了摆在众多…

SFP、SFP+、SFP28 与 QSFP28 收发器之间的差异:兼容性和性能

近年来&#xff0c;网络技术发展迅速&#xff0c;因此&#xff0c;计算专业人员面临着越来越令人困惑的术语和缩写词。 管理数据中心时必须了解的一个关键领域是收发器&#xff0c;特别是 SFP (1550nm/1310nm)、SFP (850nm) 和 QSFP28 (4x25G) 之间的差异。 这些型号在兼容性方…

密钥密码学(二)

原文&#xff1a;annas-archive.org/md5/b5abcf9a07e32fc6f42b907f001224a1 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第十章&#xff1a;可变长度分数化 本章涵盖 基于摩尔斯电码的密码 混合字母和双字母 可变长度二进制码字 基于文本压缩的密码 本章涵盖…

YOLOv9有效改进专栏汇总|未来更新卷积、主干、检测头注意力机制、特征融合方式等创新![2024/4/21]

​ 专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;助力高效涨点&#xff01;&#xff01;&#xff01; 专栏介绍 YOLOv9作为最新的YOLO系列模型&#xff0c;对于做目标检测的同学是必不可少的。本专栏将针对2024年最新推出的YOLOv9检测模型&#xff0…

DevOps流程的简单总结

DevOps流程图&#xff1a; DevOps流程包含&#xff1a;计划&#xff08;plan&#xff09;、编码(code)、编译(build)、测试(test)、发布(release)、部署(deploy)、运营(operate)、监控&#xff08;monitor&#xff09;&#xff0c;这是一个循环的过程。DevOps是依托容器、自动化…

下级平台级联EasyCVR视频汇聚安防监控平台后,设备显示层级并存在重复的原因排查和解决

视频汇聚平台/视频监控系统/国标GB28181协议EasyCVR安防平台可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;平台支持7*24小时实时高清视频监控&#xff0c;能同时…

【爬取研招网指定学校专业信息】

前言 本文介绍了如何使用 Python 的 requests 库和 BeautifulSoup 库来爬取研究方向信息&#xff0c;并将其保存为 CSV 文件。爬取的网站为“中国研究生招生信息网”&#xff08;https://yz.chsi.com.cn/&#xff09;。代码从指定的专业目录页面爬取研究方向的相关信息&#x…

Pycharm/Dataspell中使用jupyter导入ros humble包

配置ros humble对应python包路径文件 首先在~/.local/lib/python3.10/site-packages目录下新建一个.pth文件&#xff0c;如下图所示。 将对应的ros humble的python包的路径配置在上述文件中&#xff0c;一行放置一个路径&#xff0c;对应的路径如下图所示。 完成上述操作后…

IP地址定位技术引发的个人隐私保护问题

IP地址定位技术对互联网的影响深远且多面&#xff0c;它不仅改变了网络管理与优化的方式&#xff0c;还极大地推动了在线广告营销、电子商务、地理信息服务等多个领域的发展。然而&#xff0c;与此同时&#xff0c;它也引发了一系列关于个人隐私保护的问题。 首先&#xff0c;I…

太奇怪了!99%的人没见过的Oracle故障:网络恢复后,集群的监听和vip无法启动

故障描述 15:46操作系统日志出现net4、net5网卡down&#xff0c;15:53分钟的网络恢复。网络中断是由于db汇聚交换机出现了问题。 网络恢复后&#xff0c;节点1的监听和vip无法启动。 故障分析 查看grid alert日志可以看到监听资源确实没有正常启动。 由于监听资源是crs的Ora…

15.Nacos服务分级存储模型

服务跨集群调用问题&#xff1a; 服务调用尽可能的选择本地集群的服务&#xff0c;跨集群调用延迟较高。 本地集群不可访问的情况下&#xff0c;再去访问其他集群。 如何配置集群的实例属性&#xff1a; spring: cloud:nacos:server-addr: localhost:8848 #nacos服务端地址d…

Hadoop 启动!

​2024/4/22 上个星期我们已经完成了Hadoop的安装及配置文件的修改 下面 我们将namenode进行一下初始化 hdfs namenode -format (创建文件存储目录&#xff1a;账本目录namenode datanode的目录) 我们在配置时 这就是用来设置账本目录的 我们做完格式化后 tmp目录就出现了 …

短视频素材哪里找?8个视频素材库免费下载无水印

是不是想要拓宽你的视频素材资源库&#xff0c;探索更多能够为你的视频项目注入新鲜血液的网站。这一次&#xff0c;我们将介绍一系列全球精选的视频素材网站&#xff0c;每一个都能为你的创作带来不同的视觉享受和灵感启发。 1. 蛙学府&#xff08;中国&#xff09; 提供广泛…

AI重建粒子轨迹,发现新物理学

目录 二Sora冲击还没来&#xff0c;但智能家居人已经开始焦虑了&#xff01; 一、智能家居新革命&#xff1a;AIoH 二、AI技术接入智能家居&#xff0c;未来价值几何&#xff1f; 三、AI 智能家居&#xff0c;不是纸上谈兵 四、结语 电子学在核物理领域从来都不是一帆风顺…

创新指南|解码购物者营销:吸引现代消费者的艺术

在当今竞争异常激烈的零售环境中&#xff0c;了解消费者行为的复杂性不仅仅是一种营销优势&#xff0c;更是一种必要。 当我们探索购物者营销的多方面领域时&#xff0c;我们将揭示这种方法如何重新定义购物体验&#xff0c;使每次互动都有意义&#xff0c;并将日常购物者变成忠…

亚信安慧AntDB:数据库性能新高度

亚信安慧AntDB秉持着为客户提供最佳数据库解决方案的理念&#xff0c;不断探索并创新&#xff0c;最近取得了重大的突破。他们成功地研发出一种先进的数据库割接方案&#xff0c;实现了不停服、零故障的数据库割接操作&#xff0c;有效地将替换所带来的业务影响降至最低。 这一…

C++学习进阶版(二):与文件相关的函数用法

目录 1、读取文件的指定行 &#xff08;1&#xff09;main函数中直接读 &#xff08;2&#xff09;封装成函数 ① 无返回值类型 ② 直接返回读取的内容 2、求文件的行数 3、文件内容读取成一个字符串 1、读取文件的指定行 &#xff08;1&#xff09;main函数中直接读 …