【昇腾产品应用】英码科技EA500I基于昇腾Mind SDK实现实时人体关键点检测

在教育、体育、安防、交通、医疗等领域中,实时人体关键点检测应用发挥着至关重要的作用,比如在体育训练时,实时人体关键点检测可以精确、实时地捕捉运动员的动作,从而进行动作分析和优化;在安防应用场景中,实时人体关键点检测应用可以用来识别异常行为或特定姿态,以达到场景安全防控的目的。

*图片来源昇腾社区官网

那么,什么是实时人体关键点检测?

简单来说,实时人体关键点检测是一种计算机视觉技术,它能够在图像或视频中实时地自动识别并标注出人体的关键部位,如关节点、头部等。

实时人体关键点检测在边缘计算领域的应用非常重要和广泛,今天我们来介绍:如何在英码科技EA500I边缘计算盒子上使用昇腾Mind SDK来实现实时人体关键点检测。

案例概述

该项目使用昇腾MindX SDK开发端到端人体关键点识别的参考设计,实现对视频中的人体进行关键点识别的功能。

案例说明

本案例参考华为昇腾Mind SDK 实时人体关键点检测,底层原理逻辑请参考<昇腾社区应用案例>

前置条件

一、环境安装

●注意:

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题

①配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。
vi ~/.bashrc  
# 在文件最后一行后面添加如下内容。
source ${HOME}/Ascend/ascend-toolkit/set_env.sh
source /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh

export CPU_ARCH=`arch`
export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件
export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件
export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改
export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境
export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境
# 执行命令保存文件并退出。
:wq!  
# 执行命令使其立即生效。
source ~/.bashrc
# 创建samples相关依赖文件夹
mkdir -p ${THIRDPART_PATH}
# 下载源码并安装git
cd ${HOME}
sudo apt-get install git
git clone https://gitee.com/ascend/samples.git
# 拷贝公共文件到samples相关依赖路径中
cp -r ${HOME}/samples/common ${THIRDPART_PATH} 
# 拷贝media_mini等so文件以及相关头文件
mkdir -p ${INSTALL_DIR}/driver
cp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令
cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/
cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令
# 下载案例源码并安装git
cd ${HOME}
git clone https://gitee.com/ascend/mindxsdk-referenceapps.git

②安装x264插件

# 下载x264
cd ${HOME}
git clone https://code.videolan.org/videolan/x264.git
cd x264
# 安装x264
./configure --enable-shared --disable-asm
make
sudo make install
sudo cp /usr/local/lib/libx264.so.164 /lib

③安装部署ffmpeg 

# 下载ffmpeg
cd ${HOME}
wget http://www.ffmpeg.org/releases/ffmpeg-4.1.3.tar.gz --no-check-certificate
tar -zxvf ffmpeg-4.1.3.tar.gz
cd ffmpeg-4.1.3
# 安装ffmpeg
./configure --enable-shared --enable-pic --enable-static --disable-x86asm --enable-libx264 --enable-gpl --prefix=${THIRDPART_PATH} #此步骤报错可参考FAQ
make -j8
make install
# 添加环境变量
vi ~/.bashrc  
# 在文件最后一行后面添加如下内容。
export PATH=${HOME}/Ascend/thirdpart/aarch64/bin:$PATH
# 执行命令保存文件并退出。
:wq!  
# 执行命令使其立即生效。
source ~/.bashrc

④安装live555

# 下载相应版本的live555软件包,该版本测试可用,部分版本的软件包会有代码编译的报错
cd ${HOME}
wget http://www.live555.com/liveMedia/public/live.xxxx.xx.xx.tar.gz(请根据实际版本下载)
tar -zxvf live.xxxx.xx.xx.tar.gz
cd live/
# 修改config.linux
vi config.linux
找到:CPLUSPLUS_FLAGS =       $(COMPILE_OPTS) -Wall -DBSD=1
替换为:CPLUSPLUS_FLAGS =       $(COMPILE_OPTS) -Wall -DBSD=1 -std=c++2a
# 执行命令保存文件并退出。
:wq! 
# 配置视频循环推流,按照以下提示修改文件可以使自主搭建的rtsp循环推流,如果不作更改,则为有限的视频流
cd ./liveMedia/
vi ByteStreamFileSource.cpp
# 在liveMedia库下的ByteStreamFileSource.cpp文件中的95行,找到:
void ByteStreamFileSource::doGetNextFrame() {

if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0))
{
    handleClosure();
    return;
 }
# 替换为:
void ByteStreamFileSource::doGetNextFrame() {

if (feof(fFid) || ferror(fFid) || (fLimitNumBytesToStream && fNumBytesToStream == 0)) {
    //handleClosure();**
    //return;**
    fseek(fFid, 0, SEEK_SET);
 }
# 执行命令保存文件并退出。
:wq! 
# 编译并安装
cd ..
./genMakefiles linux  #注意后面这个参数是根据当前文件夹下config.<后缀>获取得到的,与服务器架构等有关。
make -j8
# 编译完成后就会在当前目录下生成mediaServer 文件夹,有一个live555MediaServer可执行文件
# 防止推流丢帧
cd ../mediaServer
vi DynamicRTSPServer.cpp
在mediaServer的DynamicRTSPServer.cpp文件中,修改每一处OutPacketBuffer::maxSize的值,更改到800000,该版本有三处需要修改。
# 执行命令保存文件并退出。
:wq!
# 修改了代码后需要重新执行编译
cd ..
make clean
./genMakefiles linux  #注意后面这个参数是根据当前文件夹下config.<后缀>获取得到的,与服务器架构等有关。
make -j8
# 转换MP4文件,把需要推流的人体MP4视频文件上传到相应目录,执行命令转换成h264文件,相应参数请自行修改
ffmpeg -i test.mp4 -vcodec h264 -bf 0 -g 25 -r 10 -s 1280*720 -an -f h264 test1.264
//-bf B帧数目控制,-g 关键帧间隔控制,-s 分辨率控制 -an关闭音频, -r 指定帧率
# 把转换后的h264文件拷贝到${HOME}/live/mediaServer/路径下
# 启动推流
./live555MediaServer
# 启动完成会输出推流地址,其中rtsp_Url的格式是 rtsp://host:port/Data,host:port/路径映射到mediaServer/目录下,Data为视频文件的路径。例:rtsp://10.1.30.111:80/test1.h264
# 启动成功后该终端窗口会一直推流,请另开一个终端窗口进行后续步骤

二、模型获取&转换 

# 进入案例路径,mindxsdk-referenceapps为前置步骤中下载的案例包
cd ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetection
# 在models路径下下载原始模型,下列链接可下载512x512的onnx模型文件
cd ./models
wget https://mindx.sdk.obs.cn-north-4.myhuaweicloud.com/mindxsdk-referenceapps%20/contrib/RTMHumanKeypointsDetection/human-pose-estimation512.onnx --no-check-certificate
# 进入"${RTMHumanKeypointsDetection代码包目录}/models/"目录,对"insert_op.cfg"文件做以下修改
related_input_rank: 0
src_image_size_w: 512 # onnx模型输入的宽,请根据对应模型进行修改,如使用本案例文档下载的原始模型,则不需要修改
src_image_size_h: 512 # onnx模型输入的高,请根据对应模型进行修改,如使用本案例文档下载的原始模型,则不需要修改
crop: false
# 使用ATC工具进行模型转换
atc --model=./human-pose-estimation512.onnx --framework=5 --output=openpose_pytorch_512 --soc_version=Ascend310B1 --input_shape="data:1, 3, 512, 512" --input_format=NCHW --insert_op_conf=./insert_op.cfg

 

三、编译运行案例

# 修改RTMHumanKeypointsDetection/pipeline目录下的rtmOpenpose.pipeline文件中mxpi_rtspsrc0的内容。
 "mxpi_rtspsrc0": {
            "factory": "mxpi_rtspsrc",
            "props": {
                "rtspUrl":"rtsp://xxx.xxx.xxx.xxx:xxxx/xxx.264",      // 修改为自己所使用的的服务器和文件名,例:rtsp://10.1.30.111:80/test1.h264
                "channelId": "0"
            },
            "next": "mxpi_videodecoder0"
        },
        # 注意检查om模型文件名是否和pipeline/rtmOpenpose.pipeline中的mxpi_tensorinfer0 插件 modelPath 属性值相同,若不同需改为一致。
       "mxpi_tensorinfer0":{
            "next":"mxpi_rtmopenposepostprocess0",
            "factory":"mxpi_tensorinfer",
            "props":{
                "dataSource": "mxpi_imageresize0",
                "modelPath":"./models/openpose_pytorch_512.om"//检查om模型文件名是否正确
            }
        },
# 若修改了模型的输入尺寸,还需要将 mxpi_imageresize0 插件中的 resizeWidth 和 resizeHeight 属性改成修改后的模型输入尺寸值;将 mxpi_rtmopenposepostprocess0 插件中的 inputWidth 和 inputHeight 属性改成修改后的模型输入尺寸值。
        "mxpi_imageresize0":{
            "next":"queue3",
            "factory":"mxpi_imageresize",
            "props":{
                "interpolation":"2",
                "resizeWidth":"512",//输入的宽,请根据对应模型进行修改
                "resizeHeight":"512",//输入的高,请根据对应模型进行修改
                "dataSource":"mxpi_videodecoder0",
                "resizeType":"Resizer_KeepAspectRatio_Fit"
            }
        },
        ......
          "mxpi_rtmopenposepostprocess0":{
            "next":"queue4",
            "factory":"mxpi_rtmopenposepostprocess",
            "props":{
                "imageSource":"mxpi_videodecoder0",
                "inputHeight":"512",//输入的高,请根据对应模型进行修改
                "dataSource":"mxpi_tensorinfer0",
                "inputWidth":"512"//输入的宽,请根据对应模型进行修改
            }
        },
#   将pipeline里面的 mxpi_videoencoder0 插件中的 imageHeight 和 imageWidth 更改为上传视频的实际高和宽。
        "mxpi_videoencoder0":{
            "props": {
                "inputFormat": "YUV420SP_NV12",
                "outputFormat": "H264",
                "fps": "1",
                "iFrameInterval": "50",
                "imageHeight": "720",#上传视频的实际高
                "imageWidth": "1280"#上传视频的实际宽
            },
# 本项目需要使用 mxpi_opencvosd 插件,使用前需要生成所需的模型文件。执行MindX SDK开发套件包安装目录下 operators/opencvosd/generate_osd_om.sh 脚本生成所需模型文件。
例:bash /home/work/MindX_SDK/mxVision-5.0.RC3/operators/opencvosd/generate_osd_om.sh
# 编译项目
cd ${HOME}/mindxsdk-referenceapps/contrib/RTMHumanKeypointsDetection
vi CMakeLists.txt
# 在target_link_libraries处添加:cpprest
例:target_link_libraries(main glog mxbase cpprest plugintoolkit mxpidatatype streammanager mindxsdk_protobuf)
cd ./plugins
bash build.sh
# 运行推理
bash run.sh
# 运行成功后如无报错会在当前路径下生成一个out.h264文件
# 转换为MP4文件
ffmpeg -i out.h264 -c copy output.mp4

 

四、案例展示

转换为MP4文件后,可以看到视频中的人体关键点。

至此,实时人体关键点检测应用部署成功,以下是英码科技技术工程师在实际操作过程中遇到的相关FAQ,供大家参考~

五、相关FAQ

①安装ffmpeg执行命令:./configure时报错:“Unable to create and execute files in /tmp. Set the TMPDIR environm”

➢该报错可能是环境问题

# 声明相关环境
export TMPDIR=~/tmp-ffmpeg
mkdir $TMPDIR
# 之后再执行./configure .......

 

②如果在使用Live555进行拉流时,依旧出现”The input frame data was too large for our buffer“问题,导致丢帧。

➢尝试进行下列优化在“live/liveMedia/StreamParser.cpp”中扩展帧解析buffer大小,即BANK_SIZE,默认值为150k,根据传输的H264数据帧大小,至少设置为300k。否则超出大小,可能会被Live555抛弃。

在“live/liveMedia/MediaSink.cpp”中增加OutPacketBuffer::maxSize大小,同样为了容纳超大帧数据,否则可能会导致数据丢失,设置为 600000。

在“live/liveMedia/MultiFramedRTPsource.cpp”中增加socket发送缓冲区大小,即increaseSendBufferTo函数的参数值--increaseRecieveBufferTo(env, RTPgs-> socketNUm(), 2000000)”

结语

以上就是英码科技EA500I边缘计算盒子基于昇腾Mind SDK实现实时人体关键点检测应用的全部操作内容,将持续推出更多基于昇腾AI芯片的边缘计算盒子和技术干货,欢迎大家持续关注和留言交流~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565446.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

web前端框架设计第五课-计算属性与监听属性

web前端框架设计第五课-计算属性与监听属性 一.预习笔记 1.计算属性 computed split():拆分 reverse():倒序 join():拼接 计算属性与方法&#xff0c;两者效果一致&#xff0c;但是computed 是基于它的依赖缓存&#xff0c;只有相关依赖发生改变时才会重新取值。而使用 met…

openGauss学习笔记-268 openGauss性能调优-TPCC性能调优测试指导-网络配置-网卡多中断队列设置

文章目录 openGauss学习笔记-268 openGauss性能调优-TPCC性能调优测试指导-网络配置-网卡多中断队列设置268.1 中断调优268.2 网卡固件确认与更新 openGauss学习笔记-268 openGauss性能调优-TPCC性能调优测试指导-网络配置-网卡多中断队列设置 本章节主要介绍openGauss数据库内…

多项式相关题()

D - S老师的虚树 值得一提的是如何求这个 a i a_i ai​&#xff0c;可以考虑按dfs序考虑同一种边&#xff0c;运用树状数组即可统计&#xff08;注意不要加重了&#xff0c;不需要打区间覆盖&#xff0c;这样可以不用打线段树&#xff09; F(i, 1, n) {ll sz d[i].size() - 1…

PLC_博图系列☞P_TRIG:扫描 RLO 的信号上升沿

PLC_博图系列☞P_TRIG&#xff1a;扫描 RLO 的信号上升沿 文章目录 PLC_博图系列☞P_TRIG&#xff1a;扫描 RLO 的信号上升沿背景介绍P_TRIG&#xff1a; 扫描 RLO 的信号上升沿说明参数示例 关键字&#xff1a; PLC、 西门子、 博图、 Siemens 、 P_TRIG 背景介绍 这是一…

Python 数据库简化操作:dataset 库介绍

文章目录 Python 数据库简化操作&#xff1a;dataset 库介绍第一部分&#xff1a;背景介绍第二部分&#xff1a;库是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;库函数使用方法第五部分&#xff1a;场景应用第六部分&#xff1a;常见…

AB5 点击消除

AB5 点击消除 可以用栈来解决。 当栈为空的时候&#xff0c;直接将字符入栈当栈非空的时候 当前字符与栈顶字符相同 出栈 当前字符与栈顶字符不同 入栈 重复上述2步即可。 栈在输出的时候不能从栈底开始输出&#xff0c;需要先把栈顶元素弹出并保存下来&#xff0c;在进行输…

力扣HOT100 - 104. 二叉树的最大深度

解题思路&#xff1a; class Solution {public int maxDepth(TreeNode root) {if (root null) return 0;return Math.max(maxDepth(root.left), maxDepth(root.right)) 1;} }

ragflow 大模型RAG知识库使用案例

参考: https://github.com/infiniflow/ragflow/blob/main/README_zh.md 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。 运行步骤: 1、确保 vm.max_map_count 不小于 262144 【更多】: 如需确认 vm.…

ZISUOJ 数据结构--队列及其应用

说明&#xff1a; 基本都是bfs的常见模板题型&#xff0c;思路都很直接&#xff0c;不过后面有两道题很搞心态&#xff0c;它们给的坐标x、y是反的&#xff0c;导致刚开始一直错。题目还是要看仔细&#xff0c;不能先入为主。 题目列表&#xff1a; 问题 A: 围圈报数(完善程序…

电磁兼容(EMC):静电放电(ESD)抗扰度试验深度解读(五)

静电放电过程是一个很复杂的过程&#xff0c;下面比对人体持金属对产品放电和静电发生器对产品进行接触放电过程的详细分解说明。 1. 人持金属对产品放电过程 人对产品所产生的静电放电&#xff0c;会发生下面一系列的事件&#xff1a; 1&#xff09;当手持金属片接近产品的…

嵌入式Linux开发实操(十九):Nand Flash驱动的实现

前言: nand flash从硬件连接上看,如下图,有专用接口,数据线有8或16根。 Nand Flash按每个存储单元Cell内存储比特个数不同可分为 SLC(Single-Level Cell存储1个比特)、MLC(Multi-Level Cell存储2个比特) 、 TLC(Triple-Level Cell存储3个比特)、QLC(Quad-Level C…

39.1k Star ! Meta GPT:AI Agent 排名第一,第一家人工智能软件公司,迈向自然语言编程

作者&#xff1a;Aitrainee | AI进修生 排版太难了&#xff0c;请点击这里查看原文&#xff1a;39.1k Star ! Meta GPT&#xff1a;AI Agent 排名第一&#xff0c;第一家人工智能软件公司&#xff0c;迈向自然语言编程 39.1k Star ! Meta GPT&#xff1a;AI Agent 排名第一&…

XV6源码阅读——页表

文章目录 前言分页硬件实际转换 内核地址空间 前言 一个本硕双非的小菜鸡&#xff0c;备战24年秋招。打算尝试6.S081&#xff0c;将它的Lab逐一实现&#xff0c;并记录期间心酸历程。 代码下载 官方网站&#xff1a;6.S081官方网站 分页硬件 RISC-V指令&#xff08;用户和内…

一款支持串口、网口自定义协议的调试软件

ComMax通讯调试软件是一款支持自定义串口&#xff0c;网口通讯协议的调试软件&#xff0c;用户可以根据需要&#xff0c;自定义协议包&#xff0c;然后根据接受的数据选择要发送的数据包。是一款强大、好用的调试软件。 点击下载 提取码&#xff1a;wmfg 不用安装 下载解压即…

LMbench单独执行某一个组件 | benchmark教程

LMbench官网 > https://lmbench.sourceforge.net/man/ 下载源码&#xff0c;编译得到的Benchmark是由很多文件组成的&#xff0c;上面的链接中官方给出了每个组件的各参数的含义&#xff0c;可以对照着修改使用&#xff0c;以达到测试在某个组件上表现的作用。 以bw_mem为例…

代码随想录第43天|1049.最后一块石头的重量II 494. 目标和

1049.最后一块石头的重量II 1049. 最后一块石头的重量 II - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 动态规划之背包问题&#xff0c;这个背包最多能装多少&#xff1f;LeetCode&#xff1a;1049.最后一块石头的重量II_哔哩哔哩_bilibili 有…

虚拟局域网PPTP配置与验证

虚拟局域网PPTP配置与验证 前言PPTP服务侧安装配置REF 前言 虚拟专用网&#xff08;Virtual Private Network&#xff0c;VPN&#xff09;是一种通过公共网络建立安全的连接的技术。它能够在不同的地理位置之间建立私密的通信通道&#xff0c;实现远程访问网络资源的安全性和隐…

QCC3040/QCC3056/QCC3086/QCCXXX发射(TX SOURCE)AUX/USB发射A2DP音乐/HFP通话

之前写过几篇USB 发射的文章&#xff0c;如下链接&#xff0c;现在在通话的基础上增加新的玩法。 https://blog.csdn.net/TengTaiTech/article/details/137339630?spm1001.2014.3001.5501 https://blog.csdn.net/TengTaiTech/article/details/137790676?spm1001.2014.3001.55…

论文解读:(VPT)Visual Prompt Tuning

文章汇总 要解决的问题 大型模型应用于下游任务本身就存在挑战。最明显的(通常也是最有效的)适应策略是对预先训练好的模型进行全面的端到端微调。 动机 只微调参数的一个子集 解决的办法 只在输入空间中引入少量特定于任务的可学习参数&#xff0c;而在下游训练期间冻结…

Attention和Transformer灵魂七问

1. 引言 最近&#xff0c;ChatGPT和其他聊天机器人将大语言模型LLMs推到了风口浪尖。这就导致了很多不是学ML和NLP领域的人关注并学习attention和Transformer模型。在本文中&#xff0c;我们将针对Transformer模型结构提出几个问题&#xff0c;并深入探讨其背后的技术理论。这…