机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。在各种语言中,R语言以编程简单,方法先进脱颖而出,本次机器学习基于现代R语言,Tidyverse,Tidymodel语法。
点击查看原文https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247522233&idx=2&sn=a38efc3c88b7d792983f6def5ea563bc&chksm=ce647d52f913f444848628d8e755e15e07c5b7b84db264457f585dc884cabb75bc7eacba3804&scene=21#wechat_redirect
专题一:基础知识
1.Tidymodel,Tidyverse语法精讲
2.机器学习的基本概念
3.机器学习建模过程
4.特征工程
专题二:回归
1.线性回归略谈
2.岭回归
3.偏最小二乘法
4.Lasso回归与最小角度回归
5.弹性网回归
专题三:树形模型
1.分类回归树
2.随机森林
专题四:集成学习
1.梯度提升法
2.装袋法
3.GBM与随机GBM
4. XGBOST
5.总结
专题五:其它方法
1.支持向量机
2.深度学习基础
3.可解释的机器学习
专题六:降维
1.主成分分析
2.广义低秩模型
3.Autoenconders
专题七:聚类与分类
1.K-均值聚类
2.分层聚类
3.K-近邻分类
4.Logistic回归