【C++航海王:追寻罗杰的编程之路】C++11(中)

目录

C++11(上)

1 -> STL中的一些变化

2 -> 右值引用和移动语义

2.1 -> 左值引用和右值引用

2.2 -> 左值引用与右值引用比较

2.3 -> 右值引用使用场景与意义

 2.4 -> 右值引用引用左值及其更深入的使用场景分析

2.5 -> 完美转发


C++11(上)

1 -> STL中的一些变化

新容器

圈起来的是C++11中的一些几个新容器,但是实际最有用的是unordered_map和
unordered_set。

容器中的一些新方法

如果我们再细细去看会发现基本每个容器中都增加了一些C++11的方法,但是其实很多都是用得
比较少的。

比如提供了cbegin和cend方法返回const迭代器等等,但是实际意义不大,因为begin和end也是
可以返回const迭代器的,这些都是属于锦上添花的操作。

实际上C++11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本:

std::vector::emplace_back

std::vector::push_back

std::map::insert

std::map::emplace

2 -> 右值引用和移动语义

2.1 -> 左值引用和右值引用

传统的C++语法中就有引用的语法,而C++11中新增的右值引用语法特性。无论左值引用还是右值引用,都是给对象取别名。

那么什么是左值?什么是左值引用呢?

左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋值,左值可以出现赋值符号的左边,右值不能出现在赋值符号的左边。定义时const修饰符后的左值,不能给他赋值,但是可以取地址。左值引用就是给左值的引用,给左值取别名。

#define  _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

int main()
{
	// 以下的p、b、c、*p都是左值
	int* p = new int(0);
	int b = 1;
	const int c = 2;

	// 以下几个是对上面左值的左值引用
	int*& rp = p;
	int& rb = b;
	const int& rc = c;
	int& pvalue = *p;

	return 0;
}

那么什么是右值?什么是右值引用呢?

右值也是一个表示数据的表达式,如:字面常量、表达式返回值、函数返回值等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名。

#define  _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

int main()
{
	double x = 1.1;
	double y = 2.2;
	// 以下几个都是常见的右值
	//10;
	//x + y;
	//fmin(x, y);
	// 以下几个都是对右值的右值引用
	int&& rr1 = 10;
	double&& rr2 = x + y;
	double&& rr3 = fmin(x, y);

	// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
	//10 = 1;
	//x + y = 1;
	//fmin(x, y) = 1;

	return 0;
}

需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可
以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地
址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用。

#define  _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

int main()
{
	double x = 1.1;
	double y = 2.2;
	int&& rr1 = 10;
	const double&& rr2 = x + y;

	rr1 = 20;

	// 报错
	rr2 = 5.5;

	return 0;
}

2.2 -> 左值引用与右值引用比较

左值引用总结:

  1. 左值引用只能引用左值,不能引用右值。
  2. const左值引用既可引用左值,也可引用右值。
#define  _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

int main()
{
	// 左值引用只能引用左值,不能引用右值。
	int a = 10;
	int& ra1 = a; // ra为a的别名

	//int& ra2 = 10;   // 编译失败,因为10是右值
	// const左值引用既可引用左值,也可引用右值。

	const int& ra3 = 10;
	const int& ra4 = a;

	return 0;
}

右值引用总结:

  1. 右值引用只能引用右值,不能引用左值。
  2. 右值引用可以move以后的左值。
#define  _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
using namespace std;

int main()
{
	// 右值引用只能右值,不能引用左值。
	int&& r1 = 10;

	// error C2440: “初始化”: 无法从“int”转换为“int &&”
	// message : 无法将左值绑定到右值引用
	int a = 10;
	int&& r2 = a;

	// 右值引用可以引用move以后的左值
	int&& r3 = std::move(a);

	return 0;
}

2.3 -> 右值引用使用场景与意义

之前也有看到左值引用既可以引用左值也可以引用右值,那么C++11为什么还要提出右值引用呢?是不是在画蛇添足呢?下面来看看左值引用的短板,右值引用又是如何补齐短板的

namespace fyd
{
	class string
	{
	public:
		typedef char* iterator;
		iterator begin()
		{
			return _str;
		}

		iterator end()
		{
			return _str + _size;
		}

		string(const char* str = "")
			:_size(strlen(str))
			, _capacity(_size)
		{
			//cout << "string(char* str)" << endl;

			_str = new char[_capacity + 1];

			strcpy(_str, str);
		}

		// s1.swap(s2)
		void swap(string& s)
		{
			::swap(_str, s._str);
			::swap(_size, s._size);
			::swap(_capacity, s._capacity);
		}

		// 拷贝构造
		string(const string& s)
			:_str(nullptr)
		{
			cout << "string(const string& s) -- 深拷贝" << endl;

			string tmp(s._str);
			swap(tmp);
		}

		// 赋值重载
		string& operator=(const string& s)
		{
			cout << "string& operator=(string s) -- 深拷贝" << endl;

			string tmp(s);
			swap(tmp);

			return *this;
		}

		// 移动构造
		string(string&& s)
			:_str(nullptr)
			, _size(0)
			, _capacity(0)
		{
			cout << "string(string&& s) -- 移动语义" << endl;

			swap(s);
		}

		// 移动赋值
		string& operator=(string&& s)
		{
			cout << "string& operator=(string&& s) -- 移动语义" << endl;

			swap(s);

			return *this;
		}

		~string()
		{
			delete[] _str;

			_str = nullptr;
		}

		char& operator[](size_t pos)
		{
			assert(pos < _size);

			return _str[pos];
		}

		void reserve(size_t n)
		{
			if (n > _capacity)
			{
				char* tmp = new char[n + 1];

				strcpy(tmp, _str);
				delete[] _str;
				_str = tmp;
				_capacity = n;
			}
		}

		void push_back(char ch)
		{
			if (_size >= _capacity)
			{
				size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;

				reserve(newcapacity);
			}
			_str[_size] = ch;
			++_size;
			_str[_size] = '\0';
		}

		//string operator+=(char ch)
		string& operator+=(char ch)
		{
			push_back(ch);

			return *this;
		}

		const char* c_str() const
		{
			return _str;
		}

	private:
		char* _str;
		size_t _size;
		size_t _capacity; // 不包含最后做标识的\0
	};
}

左值引用的使用场景:

做参数和返回值可以提高效率

void func1(fyd::string s)
{}
void func2(const fyd::string& s)
{}

int main()
{
	fyd::string s1("hello world");

	// func1和func2的调用我们可以看到左值引用做参数减少了拷贝,提高效率的使用场景和价值
	func1(s1);
	func2(s1);

	// string operator+=(char ch) 传值返回存在深拷贝
	// string& operator+=(char ch) 传左值引用没有拷贝提高了效率
	s1 += '!';

	return 0;
}

左值引用的短板:

当函数返回对象是一个局部变量,出了作用域就不存在了,就不能使用左值引用返回,只能传值返回。例如:fyd::string to_string(int value)函数中可以看到,这里只能使用传值返回,传值返回会导致至少1次拷贝构造。

namespace fyd
{
	fyd::string to_string(int value)
	{
		bool flag = true;
		if (value < 0)
		{
			flag = false;
			value = 0 - value;
		}

		fyd::string str;
		while (value > 0)
		{
			int x = value % 10;

			value /= 10;
			str += ('0' + x);
		}

		if (flag == false)
		{
			str += '-';
		}

		std::reverse(str.begin(), str.end());

		return str;
	}
}

int main()
{
	// 在fyd::string to_string(int value)函数中可以看到,这里
	// 只能使用传值返回,传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷贝构造)。
	fyd::string ret1 = fyd::to_string(1234);
	fyd::string ret2 = fyd::to_string(-1234);

	return 0;
}

右值引用和移动语义解决上述问题:

在fyd::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占为己有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己。

// 移动构造
	string(string&& s)
		:_str(nullptr)
		, _size(0)
		, _capacity(0)
	{
		cout << "string(string&& s) -- 移动语义" << endl;

		swap(s);
	}

int main()
{
	fyd::string ret2 = fyd::to_string(-1234);

	return 0;
}

移动构造中没有新开空间,拷贝数据,所以提高了效率。

不仅仅有移动构造,还有移动赋值:

在fyd::string类中增加移动赋值函数,再去调用bit::to_string(1234),不过这次是将
fyd::to_string(1234)返回的右值对象赋值给ret1对象,这时调用的是移动构造。

// 移动赋值
string& operator=(string&& s)
{
	cout << "string& operator=(string&& s) -- 移动语义" << endl;

	swap(s);

	return *this;
}

int main()
{
	fyd::string ret1;
	ret1 = fyd::to_string(1234);

	return 0;
}
// 运行结果:
// string(string&& s) -- 移动语义
// string& operator=(string&& s) -- 移动语义

这里运行后,我们看到调用了一次移动构造和一次移动赋值。因为如果是用一个已经存在的对象
接收,编译器就没办法优化了。fyd::to_string函数中会先用str生成构造生成一个临时对象,但是
我们可以看到,编译器很聪明的在这里把str识别成了右值,调用了移动构造。然后在把这个临时
对象做为fyd::to_string函数调用的返回值赋值给ret1,这里调用的移动赋值。

STL中的容器都是增加了移动构造和移动赋值:

 2.4 -> 右值引用引用左值及其更深入的使用场景分析

按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能
真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move
函数将左值转化为右值。
C++11中,std::move()函数位于 头文件中,该函数名字具有迷惑性,
并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。

template<class _Ty>
inline typename remove_reference<_Ty>::type&& move(_Ty&& _Arg) _NOEXCEPT
{
	// forward _Arg as movable
	return ((typename remove_reference<_Ty>::type&&)_Arg);
}

int main()
{
	fyd::string s1("hello world");

	// 这里s1是左值,调用的是拷贝构造
	fyd::string s2(s1);

	// 这里我们把s1 move处理以后, 会被当成右值,调用移动构造
	// 但是这里要注意,一般是不要这样用的,因为我们会发现s1的
	// 资源被转移给了s3,s1被置空了。
	fyd::string s3(std::move(s1));

	return 0;
}

2.5 -> 完美转发

模板中的&&万能引用

void Fun(int& x) 
{ 
	cout << "左值引用" << endl; 
}

void Fun(const int& x) 
{ 
	cout << "const 左值引用" << endl; 
}

void Fun(int&& x) 
{ 
	cout << "右值引用" << endl; 
}

void Fun(const int&& x) 
{ 
	cout << "const 右值引用" << endl; 
}
// 模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。
// 模板的万能引用只是提供了能够接收同时接收左值引用和右值引用的能力,
// 但是引用类型的唯一作用就是限制了接收的类型,后续使用中都退化成了左值,
// 我们希望能够在传递过程中保持它的左值或者右值的属性
template<typename T>
void PerfectForward(T&& t)
{
	Fun(t);
}

int main()
{
	PerfectForward(10);           // 右值

	int a;
	PerfectForward(a);            // 左值
	PerfectForward(std::move(a)); // 右值

	const int b = 8;
	PerfectForward(b);            // const 左值
	PerfectForward(std::move(b)); // const 右值

	return 0;
}

std::forward 完美转发在传参的过程中保留对象原生类型属性

void Fun(int& x) 
{ 
	cout << "左值引用" << endl; 
}

void Fun(const int& x) 
{ 
	cout << "const 左值引用" << endl; 
}

void Fun(int&& x) 
{ 
	cout << "右值引用" << endl;
}

void Fun(const int&& x) 
{ 
	cout << "const 右值引用" << endl;
}

// std::forward<T>(t)在传参的过程中保持了t的原生类型属性。
template<typename T>
void PerfectForward(T&& t)
{
	Fun(std::forward<T>(t));
}

int main()
{
	PerfectForward(10);          // 右值

	int a;
	PerfectForward(a);            // 左值
	PerfectForward(std::move(a)); // 右值

	const int b = 8;
	PerfectForward(b);            // const 左值
	PerfectForward(std::move(b)); // const 右值

	return 0;
}

完美转发实际中的使用场景:

template<class T>
struct ListNode
{
	ListNode* _next = nullptr;
	ListNode* _prev = nullptr;
	T _data;
};

template<class T>
class List
{
	typedef ListNode<T> Node;

public:
	List()
	{
		_head = new Node;
		_head->_next = _head;
		_head->_prev = _head;
	}

	void PushBack(T&& x)
	{
		//Insert(_head, x);
		Insert(_head, std::forward<T>(x));
	}

	void PushFront(T&& x)
	{
		//Insert(_head->_next, x);
		Insert(_head->_next, std::forward<T>(x));
	}

	void Insert(Node* pos, T&& x)
	{
		Node* prev = pos->_prev;
		Node* newnode = new Node;

		newnode->_data = std::forward<T>(x); // 关键位置

		// prev newnode pos
		prev->_next = newnode;
		newnode->_prev = prev;
		newnode->_next = pos;
		pos->_prev = newnode;
	}

	void Insert(Node* pos, const T& x)
	{
		Node* prev = pos->_prev;
		Node* newnode = new Node;

		newnode->_data = x; // 关键位置
		// prev newnode pos
		prev->_next = newnode;
		newnode->_prev = prev;
		newnode->_next = pos;
		pos->_prev = newnode;
	}

private:
	Node* _head;
};

int main()
{
	List<fyd::string> lt;

	lt.PushBack("1111");
	lt.PushFront("2222");

	return 0;
}

感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/564412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

边缘计算智能分析网关V4地面垃圾AI检测算法介绍及场景应用

在传统的卫生监管场景中&#xff0c;无法及时发现地面遗留的垃圾&#xff0c;通过人工巡逻的方式需要大量的人力、物力和时间&#xff0c;而且效率不高&#xff0c;并存在一定的滞后性&#xff0c;而采用地面垃圾AI检测算法则可以大大提高监管效率。 TSINGSEE青犀AI智能分析网…

“磁性蝴蝶”:创新结构纳米石墨烯能更精确控制自旋磁行为

内容来源&#xff1a;量子前哨&#xff08;ID&#xff1a;Qforepost&#xff09; 文丨浪味仙 深度好文&#xff1a;1300字丨7分钟阅读 摘要&#xff1a;新加坡国立大学的研究团队&#xff0c;开发出一种蝴蝶形磁性纳米石墨烯&#xff0c;包含四个具有铁磁和反铁磁相互作用的不…

视频号怎么开小店?这些必备材料,准备齐全再开店才不踩坑

大家好&#xff0c;我是电商笨笨熊 视频号小店作为今年的电商黑马&#xff0c;自是吸引着不少玩家&#xff1b; 但是开通视频号小店是需要一定门槛的&#xff0c;且与其他电商平台不同&#xff0c;因此拿着其他平台的玩法来做视频号&#xff0c;多半从开店起就会“翻车”。 …

【C++】priority_queue(优先级队列介绍、仿函数控制大堆小堆、模拟实现)

一、优先级队列 1.1介绍 优先级队列&#xff08;Priority Queue&#xff09;是一种特殊的数据结构&#xff0c;其并不满足队列先进先出的原则&#xff0c;它结合了队列和堆的特点&#xff0c;允许我们在其中插入元素&#xff0c;并且能够保证任何时候提取出的元素都是当前队列…

有公网IP,如何设置端口映射实现访问?

很多中小型公司或个人会根据自身需求自建服务器&#xff0c;或者将自己内网的服务、应用发布到外网&#xff0c;实现异地访问&#xff0c;如远程桌面、网站、数据库、公司的管理系统、FTP、管家婆、监控系统等等。 没接触过的人可能会觉得这个很难&#xff0c;实际上使用快解析…

【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署

&#x1f389;AI学习星球推荐&#xff1a; GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料&#xff0c;配有全面而有深度的专栏内容&#xff0c;包括不限于 前沿论文解读、…

【机器学习】特征筛选:提升模型性能的关键步骤

一、引言 在机器学习领域&#xff0c;特征筛选是一个至关重要的预处理步骤。随着数据集的日益庞大和复杂&#xff0c;特征的数量往往也随之激增。然而&#xff0c;并非所有的特征都对模型的性能提升有所贡献&#xff0c;有些特征甚至可能是冗余的、噪声较大的或者与目标变量无关…

2024/4/22(分布式服务事务,CAP,BASE理论,Seata,微服务集成Seata,XA,AT,TCC.Saga,TC高可用,异地容灾)

配置内容如下&#xff1a;properties # 数据存储方式&#xff0c;db代表数据库 store.modedb store.db.datasourcedruid store.db.dbTypemysql store.db.driverClassNamecom.mysql.jdbc.Driver store.db.urljdbc:mysql://127.0.0.1:3306/seata?useUnicodetrue&rewriteBatc…

鸿蒙TypeScript学习21天:【声明文件】

TypeScript 作为 JavaScript 的超集&#xff0c;在开发过程中不可避免要引用其他第三方的 JavaScript 的库。虽然通过直接引用可以调用库的类和方法&#xff0c;但是却无法使用TypeScript 诸如类型检查等特性功能。为了解决这个问题&#xff0c;需要将这些库里的函数和方法体去…

Python多线程与多进程编程

一、引言 随着计算机技术的飞速发展&#xff0c;程序运行的速度和效率成为了人们关注的焦点。为了提高程序的执行效率&#xff0c;多线程与多进程编程技术应运而生。Python作为一种通用编程语言&#xff0c;在支持多线程与多进程编程方面有着独特的优势。本文将详细探讨Python…

截断堆积柱状图

本教程原文链接&#xff1a;截断堆积柱状图绘制教程 欢迎大家转载&#xff01;&#xff01;&#xff01;&#xff01; 本期教程 写在前面 堆积柱状图是柱状图的常见类型之一&#xff0c;也是平时使用概率较高的图形之一。我们前期发布了很多个柱状图的绘制教程&#xff0c;若你…

DBUnit增强:填充随机数据和相对时间数据

痛点 测试环境验证时&#xff0c;遇到与当前相对时间相关的测试吗&#xff1f;准备一份SQL&#xff1f;隔一段时间就不能用了。每过一段时间去更新脚本或重置系统时间&#xff1f;看上去也不是很合适的解决方案。依赖数据测试时要重新做&#xff0c;演示时候得全部改&#xff…

用两种方式遍历Map集合

创建学生类对象 public class Student {private String name;public int age ;public Student() {}public Student(String name, int age) {this.name name;this.age age;}public String getName() {return name;}public void setName(String name) {this.name name;}publi…

LINUX核心配置文件md5监控

一、md5sum简介 md5sum 用于计算和校验文件的MD5值。 md5sum 常常被用来验证网络文件传输的完整性&#xff0c;防止文件被人篡改。在日常工作当中&#xff0c;我们可以用来判断系统中的重要文件是否被篡改。传文件给别人时确认是否一致。我们也还可使用 md5sum 生成文件或用户…

学习笔记:Vue2中级篇

Vue2 学习笔记&#xff1a;Vue2基础篇_ljtxy.love的博客-CSDN博客学习笔记&#xff1a;Vue2中级篇_ljtxy.love的博客-CSDN博客学习笔记&#xff1a;Vue2高级篇_ljtxy.love的博客-CSDN博客 Vue3 学习笔记&#xff1a;Vue3_ljtxy.love的博客&#xff09;-CSDN博客 文章目录 5.…

电脑监控软件员工会不会发现

电脑监控软件员工会不会发现 企业在安装电脑监控软件的时候都会问一个问题&#xff1a;会不会被员工发现&#xff1f;基本上是不会被发现的&#xff0c;因为监控软件都有隐藏功能&#xff0c;比如这款安企神。&#xff08;点击免费试用&#xff09; 它在终端安装的时候为静默安…

澳福一篇文章盘点持仓交易

什么是持仓交易&#xff0c;有什么优缺点&#xff0c;收益率是多少&#xff1f;今天澳福外汇一篇文章讲清楚。 持仓交易是长期策略。它基于波浪理论&#xff0c;根据该理论&#xff0c;市场以周期性方式发展:任何增长都伴随着衰退。交易者建立长期头寸&#xff0c;从价格上涨或…

【继承】复杂的菱形继承

博主首页&#xff1a; 有趣的中国人 专栏首页&#xff1a; C进阶 本篇文章主要讲解 菱形继承 的相关内容 目录 1. 继承与友元 2. 继承与静态成员 3. 复杂的菱形继承及菱形虚拟继承 3.1 继承分类 3.2 菱形继承导致的问题 3.3 虚拟继承解决数据冗余的原理 4. 继承和组…

揭秘链动3+1商业模式:打造未来商业新风潮

大家好&#xff0c;我是微三云周丽&#xff0c;今天给大家分析当下市场比较火爆的商业模式&#xff01; 小编今天跟大伙们分享什么是链动31模式&#xff1f; 在当今商业世界中&#xff0c;随着科技的飞速发展和消费者需求的不断升级&#xff0c;新的商业模式不断涌现。其中&a…

CAPL编程基础

1.程序结构 1.includes{} //头文件 2.variables{} //全局变量声明 3. on preStart{} //初始化 on start{} //工程运行 on preStop{} //工程预停止 on stopMeasurement{} //工程停止 4.int myFunction{} //自定义函数 2.事件 1.键盘事件 on key ‘a’ 2.报…