【elasticsearch系】1.初识玩转elasticSearch

首先给大家介绍下我使用的版本是7.17.3这个版本,关于之前6.x的版本还是有些区别的。

elasticSearch

Elasticsearch 是一个分布式文档存储。Elasticsearch 不是将信息存储为列式数据行,而是存储已序列化为 JSON 文档的复杂数据结构。存储文档时,会在1 秒内近乎实时地为其建立索引并完全可搜索。Elasticsearch 使用称为倒排索引的数据结构,支持非常快速的全文搜索。关于具体详细的大家可以查看官方文档来了解下

安装使用

因为elasticSearch是java语言开发的,关于java环境的安装这里就不介绍了,大家可自行搜索解决

为了方便学习和联系,这里我直接使用的是window安装的版本

下载elasticSearch

https://www.elastic.co/cn/downloads/past-releases#elasticsearch

解压后,我们可以看下elasticsearch.bat 启动文件引用调用了elasticsearch-env.bat这个文件。我么可以大概看下elasticsearch-env的文件内容

 所以我们可以配置下es的系统环境变量

 直接双击点击elasticsearch.bat文件启动,简直不能太easy

如果你的控制台没有什么异常问题的话,可以访问http://localhost:9200 默认端口9200验证下,出现下面的显示就代表启动没有什么问题

访问看下我们本地节点监控  http://localhost:9200/_cat/nodes?v

 客户端kibana安装

Kibana是一个开源分析和可视化平台,旨在与Elasticsearch协同工作。使用这个工具可以方便我们使用Rest API来操作我们的elasticSearch

这里注意我们最好使用和es相同的版本号

Past Releases of Elastic Stack Software | Elastic

修改对应的配置yml 国际化为zh_CN

i18n.locale: "zh-CN"

# Kibana is served by a back end server. This setting specifies the port to use.
server.port: 5601

# Specifies the address to which the Kibana server will bind. IP addresses and host names are both valid values.
# The default is 'localhost', which usually means remote machines will not be able to connect.
# To allow connections from remote users, set this parameter to a non-loopback address.
server.host: "localhost"

# Enables you to specify a path to mount Kibana at if you are running behind a proxy.
# Use the `server.rewriteBasePath` setting to tell Kibana if it should remove the basePath
# from requests it receives, and to prevent a deprecation warning at startup.
# This setting cannot end in a slash.
#server.basePath: ""

# Specifies whether Kibana should rewrite requests that are prefixed with
# `server.basePath` or require that they are rewritten by your reverse proxy.
# This setting was effectively always `false` before Kibana 6.3 and will
# default to `true` starting in Kibana 7.0.
#server.rewriteBasePath: false

# Specifies the public URL at which Kibana is available for end users. If
# `server.basePath` is configured this URL should end with the same basePath.
#server.publicBaseUrl: ""

# The maximum payload size in bytes for incoming server requests.
#server.maxPayload: 1048576

# The Kibana server's name.  This is used for display purposes.
#server.name: "your-hostname"

# The URLs of the Elasticsearch instances to use for all your queries.
elasticsearch.hosts: ["http://localhost:9200"]

# Kibana uses an index in Elasticsearch to store saved searches, visualizations and
# dashboards. Kibana creates a new index if the index doesn't already exist.
#kibana.index: ".kibana"

# The default application to load.
#kibana.defaultAppId: "home"

# If your Elasticsearch is protected with basic authentication, these settings provide
# the username and password that the Kibana server uses to perform maintenance on the Kibana
# index at startup. Your Kibana users still need to authenticate with Elasticsearch, which
# is proxied through the Kibana server.
#elasticsearch.username: "kibana_system"
#elasticsearch.password: "pass"

# Kibana can also authenticate to Elasticsearch via "service account tokens".
# If may use this token instead of a username/password.
# elasticsearch.serviceAccountToken: "my_token"

# Enables SSL and paths to the PEM-format SSL certificate and SSL key files, respectively.
# These settings enable SSL for outgoing requests from the Kibana server to the browser.
#server.ssl.enabled: false
#server.ssl.certificate: /path/to/your/server.crt
#server.ssl.key: /path/to/your/server.key

# Optional settings that provide the paths to the PEM-format SSL certificate and key files.
# These files are used to verify the identity of Kibana to Elasticsearch and are required when
# xpack.security.http.ssl.client_authentication in Elasticsearch is set to required.
#elasticsearch.ssl.certificate: /path/to/your/client.crt
#elasticsearch.ssl.key: /path/to/your/client.key

# Optional setting that enables you to specify a path to the PEM file for the certificate
# authority for your Elasticsearch instance.
#elasticsearch.ssl.certificateAuthorities: [ "/path/to/your/CA.pem" ]

# To disregard the validity of SSL certificates, change this setting's value to 'none'.
#elasticsearch.ssl.verificationMode: full

# Time in milliseconds to wait for Elasticsearch to respond to pings. Defaults to the value of
# the elasticsearch.requestTimeout setting.
#elasticsearch.pingTimeout: 1500

# Time in milliseconds to wait for responses from the back end or Elasticsearch. This value
# must be a positive integer.
#elasticsearch.requestTimeout: 30000

# List of Kibana client-side headers to send to Elasticsearch. To send *no* client-side
# headers, set this value to [] (an empty list).
#elasticsearch.requestHeadersWhitelist: [ authorization ]

# Header names and values that are sent to Elasticsearch. Any custom headers cannot be overwritten
# by client-side headers, regardless of the elasticsearch.requestHeadersWhitelist configuration.
#elasticsearch.customHeaders: {}

# Time in milliseconds for Elasticsearch to wait for responses from shards. Set to 0 to disable.
#elasticsearch.shardTimeout: 30000

# Logs queries sent to Elasticsearch. Requires logging.verbose set to true.
#elasticsearch.logQueries: false

# Specifies the path where Kibana creates the process ID file.
#pid.file: /run/kibana/kibana.pid

# Enables you to specify a file where Kibana stores log output.
#logging.dest: stdout

# Set the value of this setting to true to suppress all logging output.
#logging.silent: false

# Set the value of this setting to true to suppress all logging output other than error messages.
#logging.quiet: false

# Set the value of this setting to true to log all events, including system usage information
# and all requests.
#logging.verbose: false

# Set the interval in milliseconds to sample system and process performance
# metrics. Minimum is 100ms. Defaults to 5000.
#ops.interval: 5000

# Specifies locale to be used for all localizable strings, dates and number formats.
# Supported languages are the following: English - en , by default , Chinese - zh-CN .
i18n.locale: "zh-CN"

双击启动kibana.bat文件即可

 浏览器打开访问 http://localhost:5601/    

 找到主页面菜单-》开发者工具  我们就可以使用练习操作es的api了

 

操作es索引脚本

以下就是练习操作es索引的一些请求,大家可以直接在kibana 开发者工具操作执行练习

GET _search
{
  "query": {
    "match_all": {}
  }
}

#查看索引列表
GET /_cat/indices

#默认分词器
POST _analyze
{
  "analyzer": "standard",
  "text":"中华人民共和国"
}

# icu分词器 粗粒度的拆
POST _analyze
{
  "analyzer": "icu_analyzer",
  "text":"中华人民共和国"
}

# ik分词器 粗粒度的拆
POST _analyze
{
  "analyzer": "ik_smart",
  "text":"中华人民共和国"
}

# ik分词器 细粒度
POST _analyze
{
  "analyzer": "ik_max_word",
  "text":"中华人民共和国"
}


#创建索引
PUT  /user

#删除索引
DELETE /user

# 字段属性type为keyword代表不分词
GET /user



# 当我们添加数据的时候,默认会动态映射帮我们创建字段的类型
# 但是我们还是需要自己做静态映射来创建对应字段的类型

PUT  /user
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
       "id":{
        "type": "long"
      },
      "name":{
        "type": "keyword"
      },
      "age":{
        "type": "long"
      },
      "address":{
        "type": "text"
      }
    }
  }
}



# 创建/修改一条数据
# 这种方式做修改的话,注意下是全量做的修改,如果使用下面这种方式,直
# 会把我们的age字段干掉
# PUT /user/_doc/1
# {
#  "name":"john2",
#  "address":"陕西西安"
# }
#
PUT /user/_doc/1
{
  "id":1,
  "name":"john",
  "age":32,
  "address":"陕西西安"
}


PUT /user/_doc/2
{
  "id":2,
  "name":"mark",
  "age":18,
  "address":"陕西渭南"
}

GET /user/_doc/2

#查询数据
GET /user/_search
{
  "query":{
    "match": {
      "address": "西"
    }
  }
}


#term不分词查询
GET /user/_search
{
  "query": {
    "term": {
      "name.keyword": "john"
    }
  }
}


#重建索引 比如我现在想把name类型设置为text,address字段使用ik分词器
# 步骤:先创建一个新的索引user2
#       _reindx给新建的索引起个别名为原来的索引名称user
#       删除旧的索引
#       _alias给新的索引起别名为user  /user2/_alias/user

## 下面是重建索引的详细步骤 开始 ##
PUT /user2
{
  "mappings": {
    "properties": {
       "id":{
        "type": "long"
      },
      "name":{
        "type": "text"
      },
      "age":{
        "type": "long"
      },
      "address":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

POST  _reindex
{
  "source": {
    "index": "user"
  },
  "dest": {
    "index": "user2"
  }
}

#删除索引
DELETE /user

#给user2索引起别名为user
PUT /user2/_alias/user

#查看user索引
GET /user 


#查询数据
GET /user/_search
{
  "query":{
    "match": {
      "address": "西安"
    }
  }
}

## 重建索引的详细步骤 结束 ##


# 修改索引默认的分词器

DELETE /user2
PUT /user
{
  "settings": {
    "index":{
      "analysis.analyzer.default.type":"ik_max_word"
    }
  }
}
GET /user


#URI query查询(了解即可)
GET /user/_doc/_search?q=age:>30


#DSL query查询(重点平常工作中)
#match匹配查询,会对查询文本分词后匹配

GET /user/_search
{
  "query":{
    "match": {
      "address": "陕西"
    }
  }
}

#term 词项查询,属于精确查询,不会对查询文本进行分词
GET /user/_search
{
  "query": {
    "term": {
      "address": "陕西西安"
    }
  }
}

#查看ik分词器对于"陕西西安"这个文本是怎么分词的
POST _analyze
{
  "analyzer": "ik_max_word",
  "text":"陕西西安"
}


#使用脚本语句来更新
GET /user/_doc/2
POST  /user/_update_by_query
{
  "query": {
    "match": {
      "_id": "2"
    }
  },
  "script": {
    "source": "ctx._source.age=28"
  }
}


# 使用_update部分更新
# _update不会删除原来的文档,而是实现真正的数据更新
POST  /user/_update/2
{
  "doc":{
    "age":30
  }
}


# 批量操作可以减少网络连接所产生的开销,提升性能
# 批量创建文档create

POST _bulk
{"create":{"_index":"article","_type":"_doc","_id":1}}
{"id":1,"title":"策略设计模式","content":"策略设计模式content","tags":["设计模式","代码设计"],"create_time":1554015482530}
{"create":{"_index":"article","_type":"_doc","_id":2}}
{"id":1,"title":"工厂设计模式","content":"工厂设计模式content","tags":["设计模式","代码设计"],"create_time":1554015482530}



# 批量普通创建或全量替换索引index
# 如果原文档不存在,则是创建
# 如果原文档存在,则是替换(全量修改原文档)
POST _bulk
{"index":{"_index":"article","_type":"_doc","_id":1}}
{"id":1,"title":"策略设计模式","content":"策略设计模式解决if-else繁琐问题","tags":["设计模式","代码设计"],"create_time":1554015482530}
{"index":{"_index":"article","_type":"_doc","_id":2}}
{"id":1,"title":"工厂设计模式","content":"工厂设计模式封装对象创建使用","tags":["设计模式","代码设计"],"create_time":1554015482530}


# 批量修改update不会全量覆盖
POST _bulk
{"update":{"_index":"article", "_type":"_doc", "_id":1}}
{"doc":{"title":"策略模式"}}
{"update":{"_index":"article", "_type":"_doc", "_id":2}}
{"doc":{"create_time":1554018421008}}


GET /article/_search


# 批量删除
POST _bulk
{"delete":{"_index":"article", "_type":"_doc", "_id":1}}
{"delete":{"_index":"article", "_type":"_doc", "_id":2}}
GET /article/_search



springboot集成elasticSearch

版本选择

这里是springboot官方文档的推荐版本 ,看下图需要我们的springboot版本使用2.7.x版本即可

pom文件引入依赖

 <dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

application.yml配置

spring:
  elasticsearch:
    uris: http://localhost:9200
    connection-timeout: 3s

创建索引对象实体

@Data
@AllArgsConstructor
@Document(indexName = "user")
public class EsUserModel {
    @Id
    private Long id;
    @Field(type= FieldType.Keyword)
    private String name;
    private int age;
    @Field(type= FieldType.Text,analyzer="ik_max_word")
    private String address;

}

操作测试代码

package com.es.example;

import com.es.example.model.EsUserModel;
import lombok.extern.slf4j.Slf4j;
import net.minidev.json.JSONValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.data.elasticsearch.core.IndexOperations;
import org.springframework.data.elasticsearch.core.SearchHit;
import org.springframework.data.elasticsearch.core.SearchHits;
import org.springframework.data.elasticsearch.core.mapping.IndexCoordinates;
import org.springframework.data.elasticsearch.core.query.IndexQuery;
import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder;

import java.util.ArrayList;
import java.util.List;


@SpringBootTest
@Slf4j
public class ElasticsearchRestTemplateTest {

    @Autowired
    ElasticsearchRestTemplate elasticsearchRestTemplate;

    private final String index_name = "user";


    /**
     * 删除索引
     */
    @Test
    public void testDeleteIndex() {
        //删除索引
        IndexOperations indexOperations = elasticsearchRestTemplate.indexOps(IndexCoordinates.of(index_name));
        indexOperations.delete();
    }

    /**
     * 创建索引
     */
    @Test
    public void testCreateIndex() {
        //创建索引
        IndexOperations indexOperations = elasticsearchRestTemplate.indexOps(IndexCoordinates.of(index_name));
        if (indexOperations.exists()) {
            log.info("索引已经存在");
        } else {
            //创建索引
            indexOperations.create();
        }
    }

    /**
     * 批量添加文档数据
     */
    @Test
    public void testInsertBatch() {
        List<EsUserModel> esUserModels = new ArrayList<>();
        esUserModels.add(new EsUserModel(1L, "张三", 16, "陕西渭南"));
        esUserModels.add(new EsUserModel(2L, "李四", 18, "陕西西安"));
        esUserModels.add(new EsUserModel(3L, "王五", 19, "广州天河"));

        List<IndexQuery> queries = new ArrayList<>();
        for (EsUserModel esUserModel : esUserModels) {
            IndexQuery indexQuery = new IndexQuery();
            indexQuery.setId(esUserModel.getId().toString());
            String json = JSONValue.toJSONString(esUserModel);
            indexQuery.setSource(json);
            queries.add(indexQuery);
        }
        //bulk批量插入
        elasticsearchRestTemplate.bulkIndex(queries, EsUserModel.class);

    }

    @Test
    public void testQueryDocument() {
        NativeSearchQueryBuilder builder = new NativeSearchQueryBuilder();
        //查询
        builder.withQuery(QueryBuilders.matchQuery("address", "陕西"));
        // 设置分页信息
        builder.withPageable(PageRequest.of(0, 5));
        // 设置排序
        builder.withSort(SortBuilders.fieldSort("age").order(SortOrder.DESC));
        SearchHits<EsUserModel> search = elasticsearchRestTemplate.search(builder.build(), EsUserModel.class);
        List<SearchHit<EsUserModel>> searchHits = search.getSearchHits();
        for (SearchHit hit : searchHits) {
            log.info("返回结果:" + hit.toString());
        }
    }


}

控制台输出

我们使用kibana开发者工具请求验证是否和控制台输出一样

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/56291.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uC-OS2 V2.93 STM32L476 移植:系统移植篇

前言 上一篇已经 通过 STM32CubeMX 搭建了 NUCLEO-L476RG STM32L476RG 的 裸机工程&#xff0c;并且下载了 uC-OS2 V2.93 的源码&#xff0c;接下来&#xff0c;开始系统移植 开发环境 win10 64位 Keil uVision5&#xff0c;MDK V5.36 uC-OS2 V2.93 开发板&#xff1a;NUC…

软件测试面试总结——http协议相关面试题

前言 在PC浏览器的地址栏输入一串URL&#xff0c;然后按Enter键这个页面渲染出来&#xff0c;这个过程中都发生了什么事?这个是很多面试官喜欢问的一个问题 如果测试只是停留在表面上点点点&#xff0c;不知道背后的逻辑&#xff0c;是无法发现隐藏的bug&#xff0c;只能找一…

Spring MVC程序开发

目录 1.什么是Spring MVC? 1.1MVC定义 1.2MVC和Spring MVC的关系 2.为什么要学习Spring MVC? 3.怎么学Spring MVC? 3.1Spring MVC的创建和连接 3.1.1创建Spring MVC项目 3.1.2RequestMapping 注解介绍 3.1.3 RequestMapping 是 post 还是 get 请求&#xff1f; ​…

聊聊工程化 Docker 的最新趋势以及最佳实践

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

【Linux】Centos7 的 Systemctl 与 创建系统服务 (shell脚本)

Systemctl systemctl 命令 # 启动 systemctl start NAME.service # 停止 systemctl stop NAME.service # 重启 systemctl restart NAME.service # 查看状态 systemctl status NAME.service # 查看所有激活系统服务 systemctl list-units -t service # 查看所有系统服务 syste…

怎么查看企业的征信报告

一、企业征信报告是什么&#xff1f; 企业征信报告是对企业信用状况、财务状况和经营状况等信息进行综合评估的重要工具&#xff0c;为合作伙伴、供应商、投资者等提供了重要的参考并做出明智的决策。企业信用报告记录了企业的信用记录、债务情况以及过往的经营表现等&#xf…

【Ajax】笔记-JQuery发送jsonp请求

前端 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>jQuery-jsonp</title><style>#re…

腾讯地图点标记加调用

先看效果 PHP代码 <?phpnamespace kds_addons\edata\controller;use think\addons\Controller; use think\Db;class Maps extends Controller {// 经纬度计算面积function calculate_area($points){$totalArea 0;$numPoints count($points);if ($numPoints > 2) {…

【MySQL】视图与用户管理

【MySQL】视图 视图视图概念使用基表与视图的相互影响 用户管理新增用户删除修改密码 用户权限授予权限回收权限 视图 视图概念 视图就是一张虚拟表&#xff0c;其内容由查询定义。与真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。视图的数据变化影响到基表&…

Linux下.py文件只读问题以及解决过程

一、问题描述 如图&#xff0c;在Ubuntu Linux系统中使用pycharm管理项目文件时&#xff0c;无法编辑&#xff0c;提示文件为只读&#xff1a; 点击"OK"后仍旧无法清除只读模式&#xff0c;并报错&#xff1a; 二、问题解决 将问题定性为文件权限相关问题&#…

【英杰送书-第六期】spring—加载监听器

前几天的时候&#xff0c;项目里有一个需求&#xff0c;需要一个开关控制代码中是否执行一段逻辑&#xff0c;于是理所当然的在yml文件中配置了一个属性作为开关&#xff0c;再配合nacos就可以随时改变这个值达到我们的目的&#xff0c;yml文件中是这样写的&#xff1a; switc…

2023年全新版Java学习路线,精心整理【文中送书福利 】

小伙伴们大家好&#xff0c;这里是动力节点&#xff0c;我们从2009年开始一直在从事Java培训 到今年已经整14年了&#xff0c;虽然现在不缺培训机构&#xff0c;更不缺Java培训&#xff0c;但是像我们这么多年专注这一件事的应该也不多。我们只希望在“专业”两个字上面不断精…

【测试学习四】掌握测试用例的设计方法有哪些~

目录 需要知道&#xff1a;了解测试用例 &#x1f337;1、测试用例的基本要素&#xff1f; &#x1f337;2、什么是好的测试用例&#xff1f; &#x1f337;3、不学习测试用例的设计方法&#xff0c;能不能对一个物体或软件进行测试&#xff1f; 一、基于黑盒测试用例的设计…

Redis集群Cluster搭建

Redis集群Cluster搭建 集群框架1、下载redis2.创建Cluster文件3.修改redis配置文件4.启动redis5.链接各个redis6.分配槽位7.添加从机节点&#xff08;备份Redis&#xff09;8.以集群方式登录9.使用开源Redis可视化客户端链接 集群框架 三个集群节点&#xff0c;每个节点有个副本…

sqlserver 使用SQLOLEDB 远程数据库同步数据

exec sp_addlinkedserver remote_server, , SQLOLEDB, ip exec sp_addlinkedsrvlogin remote_server, false,null, 账号, 密码 --查询方式 select * from remote_server.数据库名.dbo.表名 --不再使用时删除链接服务器 exec sp_dropserver remote_server, droplogins…

活动预告 | 中国数据库联盟(ACDU)中国行第二站定档杭州,邀您探讨数据库技术与实践!

数据库技术一直是信息时代中不可或缺的核心组成部分&#xff0c;随着信息量的爆炸式增长和数据的多样化&#xff0c;其重要性愈发凸显。作为中国数据库联盟&#xff08;ACDU&#xff09;的品牌活动之一&#xff0c;【ACDU 中国行】在线下汇集数据库领域的行业知名人士&#xff…

JVM基础篇-方法区与运行时常量池

JVM基础篇-方法区与运行时常量池 方法区 Java 虚拟机有一个在所有 Java 虚拟机线程之间共享的方法区。方法区类似于传统语言的编译代码的存储区或者类似于操作系统进程中的“文本”段。它存储每个类的结构&#xff0c;例如运行时常量池、字段和方法数据&#xff0c;以及方法和…

在 3ds Max 中使用相机映射将静止图像转换为实时素材

推荐&#xff1a; NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 在 Photoshop 中准备图像 步骤 1 这是我将在教程中使用的静止图像。 这是我的静态相机纸箱的快照。 静止图像 步骤 2 打开 Photoshop。将图像导入 Photoshop。 打开 Photoshop 步骤 3 单击套索工…

Web端即时通讯技术(SEE,webSocket)

目录 背景简介个人见解被动推送轮询简介实现 长轮询&#xff08;comet&#xff09;简介实现 比较 主动推送长连接&#xff08;SSE&#xff09;简介实现GETPOST 效果 webSocket简介WebSocket的工作原理:WebSocket的主要优点:WebSocket的主要缺点: 实现用法一用法二 效果 比较参考…

第17节 R语言分析:生物统计数据集 R 编码分析和绘图

生物统计数据集 R 编码分析和绘图 生物统计学,用于对给定文件 data.csv 中的医疗数据应用 R 编码,该文件是患者人口统计数据集,包含有关来自各种祖先谱系的个体的标准信息。 数据集特征解释 脚本 output= file("Output.txt") # File name of output log sink(o…