从预训练损失的角度,理解语言模型的涌现能力

原文:Understanding Emergent Abilities of Language Models from the Loss Perspective
在这里插入图片描述

摘要

本文从预训练损失的角度重新审视语言模型的涌现能力,挑战了以往以模型大小或训练计算量为标准的观念。通过实验,作者发现预训练损失是预测下游任务性能的关键指标,不同规模的模型在相同预训练损失下展现相似性能。这一新视角为理解语言模型涌现能力提供了理论基础,并指出了在更小规模模型上复现或超越大型模型涌现能力的可能性。

引言

image.png
近年来,随着大规模语言模型(LMs)的发展,其在多种下游任务上展现出的涌现能力(emergent abilities)引起了广泛关注。这些能力通常被认为是大型模型的专属,但近期研究开始质疑这一观点,提出小型模型在某些情况下也能展现出类似的能力。本文旨在从预训练损失的角度重新审视语言模型的涌现能力,挑战了以往以模型大小或训练计算量为标准的旧观念。

研究动机

传统的观念认为,只有大型语言模型才具备处理复杂任务的涌现能力。然而,两个观察结果对这一信念提出了质疑:首先,小型模型在足够数据量的加持下也能在声称具有涌现能力的任务上超越大型模型。其次,一些研究指出,所谓的涌现能力可能仅仅是由于使用了非线性或不连续的评估指标。本文的动机在于,探索并证明预训练损失而非模型大小是决定语言模型在下游任务性能的关键因素。

方法论

研究背景

在探讨语言模型的涌现能力时,作者首先回顾了以往研究中关于模型规模和数据规模对预训练损失的影响。他们指出,不同模型和数据规模的组合可以在相同的训练计算量下产生不同的预训练损失,这表明预训练损失是比模型或数据规模更自然的学习能力代表。

方法动机

image.png

本文在探讨语言模型的涌现能力时,虽然提出了从预训练损失角度进行分析的新视角,但在研究过程中也暴露出一些限制和问题:

  1. 模型架构与训练算法的多样性:研究中主要关注了预训练损失与任务性能的关系,但没有充分考虑不同模型架构和训练算法对这一关系可能产生的影响。
  2. 预训练语料库的影响:预训练损失受到所使用的分词器和预训练语料库分布的影响,这导致在不同语料库上训练出的模型之间的预训练损失不具备直接的可比性。
  3. 评估指标的选择:虽然文中提到了使用连续指标来评估性能,但如何选择合适的评估指标以准确反映模型的性能仍然是一个挑战。
  4. 模型规模的上限:研究并没有明确指出模型规模的上限在哪里,即是否存在一个点,超过该点后,进一步增加模型规模不会带来性能的提升。
  5. 计算资源的限制:大规模语言模型的训练和预训练需要巨大的计算资源,这可能限制了研究的可扩展性。

作者提出,尽管预训练损失与模型的下游任务性能关系尚未被充分理解,但通过固定数据语料库、分词和模型架构来预训练多种规模的语言模型,可以更准确地评估预训练损失与下游任务性能之间的关系。
针对上述问题,文中提出了一些可能的解决思路或方法:

  1. 多架构和算法的比较:未来的研究可以在不同的模型架构和训练算法下,比较预训练损失与任务性能的关系,以更全面地理解这一关系。
  2. 标准化的预训练损失评估:建议使用标准化的预训练损失评估方法,如在公共验证集上评估不同语言模型的归一化困惑度(normalized perplexity),以考虑不同词汇表大小的影响。
  3. 评估指标的深入研究:需要对评估指标进行更深入的研究,以确保它们能够准确反映模型在特定任务上的性能。
  4. 模型规模与性能的边际效应:研究模型规模与性能之间的边际效应,确定是否存在一个最优的模型规模,超过该规模后,性能提升会显著减少。
  5. 资源有效的训练策略:探索更资源有效的训练策略,如指令调整(instruction tuning)或多任务学习,以降低对计算资源的需求。

方法步骤

  1. 预训练设置:作者选择了多种规模的模型(从300M到32B参数不等),并使用固定的数据语料库、分词方法和模型架构进行预训练。
  2. 数据和模型架构:数据集包括英文和中文的网页、维基百科、书籍和论文,模型架构类似于LLaMA,但有细微差别。
  3. 评估任务:预训练模型在12个不同的数据集上进行评估,这些数据集覆盖了多种任务、语言、提示类型和答案形式。
  4. 性能与损失的关系:通过分析不同中间训练检查点的性能和预训练损失,作者探讨了这两者之间的关系。
  5. 连续与非连续指标:为了排除非连续指标的影响,作者还使用连续指标评估了模型性能的提升。

实验分析

作者通过实验发现,当预训练损失低于特定阈值时,模型在某些下游任务上的性能会超过随机猜测水平,而这一阈值与任务的连续性无关。此外,不同规模的模型在相同的预训练损失下展现出相似的性能趋势,表明预训练损失是预测下游任务性能的一个普适指标。
image.png

创新点

本文的主要创新点在于提出了从预训练损失的角度定义语言模型的涌现能力,这一定义超越了以往以模型大小或训练计算量为标准的旧观念。作者通过实证研究证明了预训练损失与下游任务性能之间的强相关性,并指出了模型在预训练损失低于特定阈值时表现出的涌现能力。

不足与展望

尽管本文的研究为理解语言模型的涌现能力提供了新的视角,但也存在一些局限性。例如,研究中未考虑模型架构和训练算法的差异,这些因素可能影响预训练损失与任务性能的关系。此外,预训练损失受到分词器和预训练语料库分布的影响,不同语料库训练出的模型的预训练损失可能不具有直接可比性。

未来的研究可以进一步探索在不同预训练语料库上的模型性能,以及如何通过指令调整或模型架构改进来降低涌现能力出现的规模要求。此外,研究者可以利用本文提出的视角,深入分析模型在特定预训练损失阈值下的行为变化,以促进新能力的发展。

结论

文中提出的从预训练损失角度理解语言模型的涌现能力,已经在一定程度上解释了为何不同规模的模型在特定任务上会表现出类似的性能。通过固定数据集和模型架构进行预训练,作者能够更准确地控制变量,从而更清晰地揭示预训练损失与下游任务性能之间的关系。

然而,由于上述问题的复杂性,文中提出的方法可能还需要进一步的实验和分析来验证其在不同情境下的适用性和有效性。特别是,如何将这些发现转化为实际应用中更高效的模型训练和优化策略,仍然需要更多的研究和探索。

本文通过深入分析,提出了从预训练损失的角度来理解和预测语言模型的涌现能力。这一新的定义不仅为语言模型的研究提供了新的理论基础,也为未来的研究方向指明了新的可能性。通过更细致的控制预训练损失,我们有望在更小规模的模型上复现或甚至超越大型模型的涌现能力,这将对资源有限的研究机构和开发者具有重要意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/561630.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SRIO系列-时钟逻辑与复位逻辑

一、前言 上一篇讲述了SRIO协议的基本概念,传输的HELLO帧格式、事务类型等,本篇说一下SRIO IP核的时钟关系。 基本的IP设置可以参考此篇文章:【高速接口-RapidIO】Xilinx SRIO IP 核详解-CSDN博客 二、时钟关系 PHY可以在两个时钟域上运行…

C#语法知识之运算符

3、运算符 目录 3、运算符1、算数运算符思考 秒转化时间 2、字符串拼接3、条件运算符4、逻辑运算符5、位运算符6、三目运算符思考 闰年 1、算数运算符 1、赋值符号 //把右侧的值赋给左侧的变量2、算数运算符 _ * / float f 1 / 2f; %3、算数运算符的优先级 //乘除余优先级高…

【数据结构3-栈和队列】

数据结构3-栈和队列 1 栈-特殊的线性表-先进后出1.1 栈的三个案例 2 队列-与栈相反-先进先出2.1 队列的案例 3 用C实现栈的代码:4 用C实现队列的代码 1 栈-特殊的线性表-先进后出 1.1 栈的三个案例 2 队列-与栈相反-先进先出 2.1 队列的案例 3 用C实现栈的代码&…

<计算机网络自顶向下> TCP拥塞

目录 TCP拥塞控制机制 TCP拥塞感知 TCP速率控制方法 TCP拥塞控制和流量控制的联合动作 TCP拥塞控制策略 TCP吞吐量 TCP公平性 TCP拥塞控制机制 端到端的拥塞控制机制 路由器不向主机提供有关拥塞的反馈信息 路由器负担较轻 符合网络核心简单的TCP/IP架构原则 端系统根据自…

【机器学习】农田智能监控系统的实践探索

机器学习赋能现代农业:农田智能监控系统的实践探索 一、机器学习在现代农业中的重要作用二、机器学习在农田智能监控系统中的应用三、农田智能监控系统的实践意义 在科技飞速发展的今天,机器学习技术正以其强大的数据处理和模式识别能力,逐步…

Windows下Git的使用

目录 一、克隆远程仓库到本地二、git的三板斧2.1 add-将代码添加到本地仓库2.2 commit-提交代码到本地仓库2.3 push-推送本次添加操作到远程仓库2.4 gitee只有三板斧吗? 三、推送后没有出现绿点四、push到远程时报错五、git图形化界面下载链接 一、克隆远程仓库到本…

nodejs大文件上传

安装依赖 1.express 帮我们启动服务&#xff0c;并且提供接口 2.multer 读取文件&#xff0c;存储 3.cors 解决跨域 项目的目录结构&#xff1a; 前端代码&#xff1a; <input type"file" /><script>const file document.queryselector(input)// 分隔…

【漏洞复现】WordPress_Wholesale_Market admin-ajax.php 任意文件读取漏洞

0x01 产品简介 WordPress Wholesale Market是一个WordPress主题,专门设计用于创建批发市场和在线商城网站。该主题提供了许多功能和设计元素,使您能够轻松地构建一个功能强大的批发市场平台,以满足批发商和零售商的需求。 0x02 漏洞概述 WordPress Wholesale Market存在任…

(2022级)成都工业学院数据库原理及应用实验八: 数据库恢复技术

写在前面 1、基于2022级软件工程/计算机科学与技术实验指导书 2、成品仅提供参考 3、如果成品不满足你的要求&#xff0c;请寻求其他的途径 运行环境 window11家庭版 Navicat Premium 16 Mysql 8.0.36 实验要求 1、使用mysqldump实现数据库备份。 2、使用mysqldump实…

【声呐仿真】学习记录1-配置dave、uuv_simulator

【声呐仿真】学习记录1-配置dave、uuv_simulator 1.介绍2.配置3.一些场景 1.介绍 家|DAVE项目 — Home | Project DAVE 2.配置 参考官方教程安装|DAVE项目 — Installation | Project DAVE mkdir -p ~/uuv_ws/src cd ~/uuv_ws/src git clone https://github.com/Field-Robot…

基于SpringBoot的“体质测试数据分析及可视化”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“体质测试数据分析及可视化”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 体质测试数据分析及可视化设计结构图…

python多线程技术(Threading)

文章目录 前言一、多线程(Threading)是什么?二、threading库1.初识多线程2.增加新线程2.1 多线程的基本使用2.2 对多线程是同时进行的进行一个直观上的演示(非重点--理解是实时就行)2.3 thread.join()功能2.4 使用queue(队列)功能获取多线程的返回值(重要,这就是前面那…

永恒之蓝上线CS

该文介绍了在内网环境下&#xff0c;利用永恒之蓝漏洞&#xff08;EternalBlue&#xff09;将攻击者控制台&#xff08;CS&#xff09;上线的方法。前提条件是目标机器可上网、无防火墙和杀毒软件&#xff0c;并且存在永恒之蓝漏洞。使用Erebus插件的eterblue功能&#xff0c;通…

【Java框架】Spring框架(三)——Spring整合Mybatis及Spring声明式事务

目录 回顾Mybatis和新对象思路整理 Spring和MyBatis的整合步骤1. 创建Web工程&#xff0c;导入Spring和MyBatis的相关依赖2. 建立开发目录结构&#xff0c;创建实体类3. 创建数据访问接口和SQL映射语句文件4. 使用Spring配置文件配置数据源4.1 database.properties4.2spring配置…

第6章 Kafka-Eagle监控【Kafka】

第6章 Kafka-Eagle监控【Kafka】 前言推荐第6章 Kafka-Eagle监控6.1 MySQL环境准备6.2 Kafka环境准备6.3 Kafka-Eagle安装6.4 Kafka-Eagle页面操作 最后 前言 2024-3-27 22:44:15 本文是根据尚硅谷学习所做笔记 仅供学习交流使用&#xff0c;转载注明出处 推荐 【尚硅谷】…

纯干货|图像清晰度从哪里优化

1.Demosaic 调试Demosaic参数需要结合实验室静物高频细节需要插值出来如静物场景的视力表、星条卡和实验室灯箱环境下解析率卡的解析度指标满足要求。 Demosaic模块实现的功能就是将输入的Bayer数据转化成RGB数据。为获得彩色图像,需要利用当前像素及周围像素的色彩分…

计算机组成原理【CO】Ch7 I/O大题

目录 I/O大题解题方法 I/O接口 各种I/O方式的特点 I/O端口编址 程序查询方式 中断控制方式 DMA控制方式 程序中断的工作流程 程序中断的工作流程 DMA方式和中断方式的区别 I/O大题解题方法 CPU 程序查询中断DMA I/O接口的类型 按字传输&#xff1a;每次传输一个字 程…

ROS分布式通讯配置

4WD 必读&#xff1a;分布式通讯是相对于用虚拟机来连接小车上主机来说&#xff0c;如果是 4WD 笔记本无主 机用户&#xff0c;不存在分布式通讯一说。 1.4WD 用户单笔记设置一&#xff0c;连接底盘和雷达还有摄像头。 因为虚拟机带宽问题&#xff0c;无法保证摄像头正常运行。…

利用Django中的缓存系统提升Web应用性能

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 在构建现代Web应用时&#xff0c;性能通常是至关重要的考虑因素之一。为了提高用户体验和应…

车轮上的智能:探索机器学习在汽车行业的应用前景

文章目录 引言&#xff1a;一、机器学习在汽车设计中的应用设计优化模拟与测试 二、智能制造与生产三、自动驾驶技术感知与决策数据融合 四、市场与模式的变革五、机器学习对于汽车行业的机遇与挑战挑战机遇 引言&#xff1a; 在当今数字化时代&#xff0c;机器学习作为人工智…