Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

一、简单介绍

二、简单人脸检测添加戴眼镜效果实现原理

三、简单人脸检测添加戴眼镜效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

人脸检测的两个重要概念:哈尔特征分类器(Haar Feature Classifier)和级联分类器(Cascade Classifier)是用于。

哈尔特征分类器:

    定义:哈尔特征分类器是一种基于哈尔特征的机器学习算法,用于检测图像中的对象或特定区域。

    原理:哈尔特征是一种基于图像局部特征的数学描述方法,通过对图像中不同区域像素值的差异进行计算,提取出具有区分度的特征。这些特征可以是边缘、线段、角点等。哈尔特征分类器通过训练过程学习到一组有效的特征模式,用于区分目标和非目标区域。

    应用:哈尔特征分类器常用于对象检测任务,如人脸检测、眼睛检测等。在训练过程中,通常需要提供正样本(包含目标的图像)和负样本(不包含目标的图像),让分类器学习区分目标和非目标的特征模式。

级联分类器:

    定义:级联分类器是一种多级联组成的分类器结构,由多个弱分类器组成,通过级联方式实现目标检测。

    原理:级联分类器将多个简单的分类器组合成一个复杂的分类器,每个简单分类器都是一个弱分类器,对目标区域进行初步筛选或过滤。级联分类器通过级联多个弱分类器,每个分类器都负责判断一组特征是否满足条件,通过级联的方式实现高效的目标检测。

    应用:级联分类器常用于实时目标检测任务,如人脸检测、车辆检测等。OpenCV 中的 Haar 级联分类器是基于哈尔特征的级联分类器,通过级联多个分类阶段来实现高效的人脸检测。级联分类器的优势在于其高速、高效的检测性能,适用于实时应用场景。

OpenCV 提供了一些已经训练好的级联分类器,这些级联分类器以XML文件的方式保存在以下路径中:

 ...\Python\Lib\site-packages\cv2\data\

OpenCV提供了一些经过预训练的人脸检测器模型文件,这些文件通常包含在OpenCV的安装包中。你可以在OpenCV的官方GitHub页面或者OpenCV官方网站的下载页面找到这些模型文件的下载链接。

一般来说,你可以从以下位置获取OpenCV的预训练模型文件:

  • OpenCV GitHub Release 页面:在 Releases · opencv/opencv · GitHub 找到你需要的版本,然后在下载的压缩包中找到位于 opencv\data 目录下的人脸检测器模型文件。
  • OpenCV 官方网站下载页面:访问 OpenCV 官方网站 Releases - OpenCV ,下载你需要的版本,并在相应的压缩包中查找人脸检测器模型文件。

请确保下载与你使用的OpenCV版本兼容的模型文件。

二、简单人脸检测添加戴眼镜效果实现原理

人脸检测添加带眼镜效果是指利用计算机视觉技术中的人脸检测算法,识别图像或视频中的人脸,并在识别到的人脸位置上叠加眼镜图像,以实现给人脸添加眼镜的效果。

实现原理:

  1. 使用 OpenCV 的人脸识别功能检测图像中的人脸位置。
  2. 在检测到的每张人脸位置上,根据人脸的宽度调整眼镜的大小。
  3. 将调整后的眼镜图像覆盖到人脸图像上,完成眼镜效果的添加。

具体方法:

  1. 使用 OpenCV 加载人脸识别分类器。
  2. 读取人脸图像和眼镜图像。
  3. 对人脸图像进行人脸检测,获取人脸的位置信息。
  4. 遍历检测到的每张人脸,根据人脸宽度调整眼镜大小。
  5. 将调整后的眼镜图像覆盖到对应人脸位置上。
  6. 返回带有眼镜效果的图像数据。

案例中涉及的两个关键函数说明

  1. over_img(img, img_over, over_x, over_y)

    • 功能:将一个图像覆盖在另一个图像的指定位置上。
    • 参数:
      • img:原始图像,numpy 数组格式。
      • img_over:要覆盖的图像,numpy 数组格式。
      • over_x:要覆盖图像的左上角 x 坐标。
      • over_y:要覆盖图像的左上角 y 坐标。
    • 返回值:覆盖后的图像,numpy 数组格式。
  2. apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.35)

    • 功能:在输入的人脸图像上添加眼镜效果。
    • 参数:
      • input_image_path:输入的人脸图像路径。
      • glasses_image_path:眼镜图像的路径。
      • vertical_offset:眼镜垂直位置的调整参数,默认值为0.35。
    • 返回值:带眼镜效果的图像数据,numpy 数组格式。
  3. cv2.CascadeClassifier()

    • 函数说明:用于加载 Haar 级联分类器,用于人脸检测。
    • 参数:
      • xml_file_path:Haar 级联分类器的 XML 文件路径。
    • 返回值:返回一个级联分类器对象,用于后续的人脸检测

这些函数负责在人脸图像上添加眼镜效果,其中over_img函数用于将眼镜图像覆盖到人脸图像的指定位置上,而apply_glasses函数则是整个眼镜效果添加的入口函数,调用了人脸识别、图像处理等功能。

三、简单人脸检测添加戴眼镜效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

"""
简单人脸检测添加戴眼镜效果
    1、使用 OpenCV 加载人脸识别分类器。
    2、读取人脸图像和眼镜图像。
    3、对人脸图像进行人脸检测,获取人脸的位置信息。
    4、遍历检测到的每张人脸,根据人脸宽度调整眼镜大小。
    5、将调整后的眼镜图像覆盖到对应人脸位置上。
    6、返回带有眼镜效果的图像数据。
"""

import cv2


def over_img(img, img_over, over_x, over_y):
    """
    将一张图像覆盖到另一张图像上
    :param img: (numpy.ndarray) 目标图像数据
    :param img_over: (numpy.ndarray) 待覆盖图像数据,包含 alpha 通道
    :param over_x: (int) 待覆盖图像左上角的 x 坐标
    :param over_y: (int) 待覆盖图像左上角的 y 坐标
    :return: numpy.ndarray 覆盖后的图像数据
    """
    img_h, img_w, c = img.shape
    img_over_h, img_over_w, over_c = img_over.shape
    # 将待覆盖图像转换为带 alpha 通道的 BGRA 格式
    if over_c == 3:
        img_over = cv2.cvtColor(img_over, cv2.COLOR_BGR2BGRA)
    # 遍历待覆盖图像的每个像素
    for w in range(0, img_over_w):
        for h in range(0, img_over_h):
            # 透明像素不能覆盖目标图像
            if img_over[h, w, 3] != 0:
                # 遍历 RGB 通道
                for c in range(0, 3):
                    x = over_x + w
                    y = over_y + h
                    # 如果超出目标图像范围,则跳出循环
                    if x >= img_w or y >= img_h:
                        break
                    # 将待覆盖图像像素覆盖到目标图像上
                    img[y, x, c] = img_over[h, w, c]
    return img


def apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.35):
    """
    在人脸图像上添加眼镜效果
    :param input_image_path: (str) 输入的人脸图像路径
    :param glasses_image_path: (str) 眼镜图像的路径
    :param vertical_offset: (float) 眼镜垂直位置的调整参数,范围为0到1,默认值为0.35
    :return: numpy.ndarray 带眼镜效果的图像数据
    """
    # 参数安全性校验
    if not isinstance(input_image_path, str) or not input_image_path.strip():
        raise ValueError("Invalid input image path.")

    if not isinstance(glasses_image_path, str) or not glasses_image_path.strip():
        raise ValueError("Invalid glasses image path.")

    if not (0 <= vertical_offset <= 1):
        raise ValueError("Vertical offset parameter must be between 0 and 1.")

    # 读取人脸和眼镜图像
    img = cv2.imread(input_image_path)
    glass = cv2.imread(glasses_image_path, cv2.IMREAD_UNCHANGED)  # 保留图像类型
    height, weight, channel = glass.shape
    # 加载人脸识别联结器
    faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
    # 进行人脸检测
    faces = faceCascade.detectMultiScale(img, 1.15, 4)
    # 对每个检测到的人脸应用眼镜效果
    for (x, y, w, h) in faces:
        gw = w
        gh = int(height * gw / weight)
        # 调整眼镜图像大小以适应人脸宽度
        img_over_new = cv2.resize(glass, (gw, gh))
        # 将眼镜图像覆盖到人脸图像上
        img = over_img(img, img_over_new, x, y + int(h * vertical_offset))
        # 绘制脸部范围图框
        # cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 5)
    return img


# 测试接口调用
if __name__ == "__main__":
    input_image_path = "Images/TwoManFace.png"
    glasses_image_path = "Images/glasses.png"

    try:
        output_img = apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.0)
        cv2.imshow("output_img", output_img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        print("Glasses applied successfully.")
    except ValueError as ve:
        print(f"Error: {ve}")

四、注意事项

  1. 人脸识别结果可能有误,因此需要根据实际情况调整眼镜的位置和大小。
  2. 眼镜图像的背景应该是透明的,以便与人脸图像进行叠加。
  3. 调整眼镜大小时,应保持眼镜的比例,以确保效果自然。
  4. 确保输入图像路径和眼镜图像路径有效,以避免出现读取失败的情况。
  5. 在覆盖眼镜图像到人脸图像时,注意边界情况,防止超出图像范围。
  6. 眼镜的垂直位置调整参数应在0到1之间,表示眼镜在人脸垂直方向上的偏移量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/561540.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux学习】Linux编辑器vim的配置

文章目录 &#x1f526;vim的配置&#x1f526;vim的配置文件&#x1f526;添加配置的方法&#x1f526;手动添加相关特性配置&#xff1a;&#x1f526;自动化配置 &#x1f526;vim的配置 &#x1f526;vim的配置文件 在目录 /etc/ 下面&#xff0c;有个名为vimrc的文件&…

SpringMVC Controller 层没有使用 @ResponseBody 注解引发的血案(api访问404)

问题现象&#xff1a; 项目组的一个同事发现在请求该接口时候&#xff0c;总是报 404 错误&#xff0c;又找不到错误日志&#xff0c;一时之间不知道该如何去着手解决问题&#xff0c;我帮他排查问题的时候&#xff0c;发现该接口两次经过拦截器的 preHandle 方法&#xff0c;…

URL地址解析至页面展示全过程(面试详细解答)

目录 1、解析URL 2、缓存判断 ​编辑3、DNS解析 ​编辑4、获取MAC地址 5、TCP三次握手 6、HTTP请求 7、服务器处理请求&#xff0c;返回HTTP响应 8、页面渲染 9、TCP四次挥手 10、浏览器解析HTML 11、浏览器布局渲染 1、解析URL 首先会对 URL 进行解析&#xff0c;…

目标检测算法演变:从R-CNN到Faster R-CNN【AI写作一键生成】

首先&#xff0c;这篇文章是基于笔尖AI写作进行文章创作的&#xff0c;喜欢的宝子&#xff0c;也可以去体验下&#xff0c;解放双手&#xff0c;上班直接摸鱼~ 按照惯例&#xff0c;先介绍下这款笔尖AI写作&#xff0c;宝子也可以直接下滑跳过看正文~ 笔尖Ai写作&#xff1a;…

【Day 3】Ajax + Vue 项目、路由 + Nginx

1 Ajax Asynchronous JavaScript And XML 异步的 JavaScript 和 XML 作用&#xff1a; 数据交换 通过 Ajax 可以给服务器发送请求&#xff0c;并获取服务器响应的数据 异步交互 可以在不重新加载整个页面的情况下&#xff0c;与服务器交换数据并更新部分网页的技术&#xf…

车载以太网DoIP 协议,万字长文详解

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

欢迎大家光临成都市

我现在就在家里&#xff0c;刚刚理个发&#xff0c;洗个澡 爸妈也在家里&#xff0c;一切正常&#xff0c;但是QQ上不了&#xff0c;哎呀,又长胖了&#xff0c;不好意思

Next App Router(上)

目录 1. 文件系统&#xff08;file-system&#xff09; 2. 从 Pages Router 到 App Router 3. 使用 App Router 4. 定义页面&#xff08;Pages&#xff09; 路由&#xff08;Router&#xff09;是 Next.js 应用的重要组成部分。在 Next.js 中&#xff0c;路由决定了一个页面…

适合各大资源网投稿html源码

源码介绍 适合各大资源网投稿html源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 效果预览 源码下载 适合各大资源…

书生·浦语大模型实战训练营--第二期第六节课--Lagent AgentLego 智能体应用搭建--notebook

一、 大模型的局限性 大模型本身存在下面的几个问题&#xff1a;幻觉&#xff08;虚假信息&#xff0c;不符合实际&#xff09;、时效性&#xff08;训练数据过时&#xff0c;不能实时更新&#xff09;、可靠性&#xff08;对于复杂任务&#xff0c;可能错误输出&#xff09; …

Spring AOP(面向切面编程)

1.Spring AOP 简介 1.1 AOP概述 AOP 为 Aspect Oriented Programming 的缩写&#xff0c;意思为面向切面编程, 是通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术。AOP 是 OOP 的延续&#xff0c;是Spring框架中的一个重要内容&#xff0c;是函数式编程的一…

串口小项目 - 声控刷抖音

项目准备&#xff1a; orangepi02 语言 模块: SU-03T 电脑 接线: 语言模块 - orangepi VCC - 5V GND - GND B7(RX)--RX-5 orangepi 手机 通过usb 连接 实现思路图: 语言模块接收到语言信息&#xff0c;发送到 H616 去处理&#xff0c;H616再控制手机实现语言刷抖音的功能 …

【Proteus】51单片机对步进电机的控制

步进电机&#xff1a;将电脉冲信号转变为角位移或线位移的开换控制系统。在非超载的情况下&#xff0c;电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数&#xff0c;而不受负载变化的影响&#xff0c;即给电机加一个脉冲信号&#xff0c;电机则转过一个步距角。 特点&am…

服务网关GateWay基础

1. 网关基础介绍1.1 网关是什么1.2 为啥要用网关1.3 常见的网关组件NginxNetflix ZuulSpring Cloud GatewayKongAPISIX综合比较 2. gateWay的使用2.1 springCloud整合gateway2.2 GateWay的相关用法2.3 GateWay路由使用示例基本用法转发/重定向负载请求动态路由 2.5 断言(Predic…

代码随想录 797. 所有可能的路径

题目 给你一个有 n 个节点的 有向无环图&#xff08;DAG&#xff09;&#xff0c;请你找出所有从节点 0 到节点 n-1 的路径并输出&#xff08;不要求按特定顺序&#xff09; graph[i] 是一个从节点 i 可以访问的所有节点的列表&#xff08;即从节点 i 到节点 graph[i][j]存在一…

电视音频中应用的音频放大器

电视机声音的产生原理是将电视信号转化为声音&#xff0c;然后通过扬声器将声音播放出来。当我们打开电视并选择频道时&#xff0c;电视机首先从天线或有线电视信号中获取声音信号。声音信号经过放大器放大之后&#xff0c;就能够通过扬声器发出声音。电视机声音的产生原理和音…

React【Day4下+5】

环境搭建 使用CRA创建项目&#xff0c;并安装必要依赖&#xff0c;包括下列基础包 Redux状态管理 - reduxjs/toolkit 、 react-redux路由 - react-router-dom时间处理 - dayjsclass类名处理 - classnames移动端组件库 - antd-mobile请求插件 - axios 配置别名路径 1. 背景知识…

Java | Leetcode Java题解之第32题最长的有效括号

题目&#xff1a; 题解&#xff1a; class Solution {public int longestValidParentheses(String s) {int left 0, right 0, maxlength 0;for (int i 0; i < s.length(); i) {if (s.charAt(i) () {left;} else {right;}if (left right) {maxlength Math.max(maxlen…

【Linux】NFS网络文件系统搭建

一、服务端配置 #软件包安装 [roothadoop01 ~]# yum install rpcbind nfs-utils.x86_64 -y [roothadoop01 ~]# mkdir /share#配置文件修改 #格式为 共享资源路径 [主机地址] [选项] # [roothadoop01 ~]# vi /etc/exports /share 192.168.10.0/24(rw,sync,no_root_squash) #…

智慧社区整体解决方案(PPT)

1、背景与现状分析 2、解决方案 3、功能及应用场景介绍 软件资料清单列表部分文档&#xff1a; 工作安排任务书&#xff0c;可行性分析报告&#xff0c;立项申请审批表&#xff0c;产品需求规格说明书&#xff0c;需求调研计划&#xff0c;用户需求调查单&#xff0c;用户需求…