EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测

目录

    • EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测;

2.运行环境为Matlab2023及以上;

3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

4.data为数据集,main1-VMD.m、main2-VMD-TCN-LSTM-MATT.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模.
首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,LSTM网络被引入以处理序列数据中的短期和长期依赖关系。能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到LSTM网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/561402.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

手写一个Spring IOC框架

目录 一,Spring IOC 二,流程图设计 三,设计思路解析 三,开始写代码 1.准备工作: 2.扫描并加载类信息 3.初始化bean 4.测试一下 一,Spring IOC Spring IoC容器是Spring框架的核心,它通过读取配置信息…

【C语言】万字详讲操作符

目录 前言 一、操作符分类 二、算数操作符 三、移位操作符 四、位操作符 五、赋值操作符 六、单目操作符 6.1 逻辑反操作 6.2 负值与正值 6.3 取地址 6.4 sizeof 6.5 取反操作符 6.6 --和操作符 6.7 间接访问操作符(解引用操作符) 6.8 强…

java导出数据到excel表中

java导出数据到excel表中 环境说明项目结构1.controller层2.service层3.实现层4.工具类:ExcelUtil.java5.ProductModel.java类 使用的Maven依赖postman请求展示,返回内容需要前端接收浏览器接收说明(如果下载下来的为zip类型,记得…

矽塔SA8321 单通道 2.7-12.0V 持续电流 3.0A H 桥驱动芯片

描述 SA8321是为消费类产品,玩具和其他低压或者电池供电的运动控制类应用提供了一个集成的电机驱动器解决方案。此器件能够驱动一个直流无刷电机,由一个内部电荷泵生成所需的栅极驱动电压电路和4个功率 NMOS组成H桥驱动,集成了电机正转/反…

polkit服务启动失败

使用systemctl 命令报错 Authorization not available. Check if polkit service is running or see debug message for more information. 查看polkit状态是失败的状态,报缺少libstdc.so.6 systemctl status polkit 需要安装libstdc.so.6库 先加载所有安装包 …

网络安全产品---堡垒机

what 在网上搜索 运维审计与风险控制系统就是是堡垒机 我认为的堡垒机就是提供高效运维、认证管理、访问控制、安全审计和报表分析功能的云服务设备 实现高效运维的同时最大程度控制运维风险。 how 能够对运维人员维护过程进行全面跟踪、控制、记录、回放 支持细粒度配置…

最新Java面试题3【2024中级】

互联网大厂面试题 1:阿里巴巴Java面试题 2:阿里云Java面试题-实习生岗 3:腾讯Java面试题-高级 4:字节跳动Java面试题 5:字节跳动Java面试题-大数据方向 6:百度Java面试题 7:蚂蚁金服Java…

SpringMVC02:注解模式

SpringMVC02:注解模式 文章目录 SpringMVC02:注解模式前言一、代码编写:1. 编写jsp页面2. 在web.xml中,注册DispatcherServlet(须要绑定SpringMVC配置文件)3. 编写SpringMVC 的 配置文件4. 编写Controller类…

医学临床预测模型发展新趋势-并联式

医学临床预测模型发展新姿势-并联式 现有的预测模型是对单个结局指标进行分类或者回归,得出最终的结论,而辅助医生进行临床决策。众所周知,临床决策过程中,医生通常会考虑多个结局指标来做出最终的决策;临床研究中也通…

【JavaScript编程实操14】DOM实操_回到顶部

前言 本次主要是针对Javascript阶段的DOM实操方面的练习,本次主要实现当页面内容过多时,可以点击按钮,快速回到页面顶部的效果。这次的实现逻辑比较简单,主要是应用函数实现页面的回到顶部功能,this.scrollTo(0, 0)可以…

万界星空科技机器人组装行业MES系统

一、为什么选择万界星空科技? 万界星空科技作为一家在云MES系统的研发、生产自动化方面拥有很多年行业经验的科技型企业,多年来专注于云MES系统的研发与技术支持服务,目前已成为国内知名的智能制造整体解决方案提供商。 公司凝聚了一支经验…

Redis系列之Cluster集群搭建

在上一篇博客,我们学习Redis哨兵Sentinel集群的搭建,redis的哨兵模式提供了比如监控、自动故障转移等高可用方案,但是这种方案,容量相对固定,要进行持续扩容或者数据分片就不适合,所以有另外一种更复杂的集…

线性代数基础3 行列式

行列式 行列式其实在机器学习中用的并不多,一个矩阵必须是方阵,才能计算它的行列式 行列式是把矩阵变成一个标量 import numpy as np A np.array([[1,3],[2,5]]) display(A) print(矩阵A的行列式是:\n,np.linalg.det(A))array([[1, 3],[2, …

视频质量评价 PSNR 算法详细介绍

PSNR PSNR(Peak Signal-to-Noise Ratio,峰值信噪比)是一种常用的评价图像质量的指标,尤其在图像压缩和图像处理领域。它基于最大可能的图像信号功率和图像的噪声功率之间的比率,通常用于衡量图像恢复或图像压缩算法的效果。 原理 PSNR是基于MSE(Mean Squared Error,均…

『 论文解读 』大语言模型(LLM)代理能够自主地利用1 day漏洞,利用成功率竟高达87%,单次利用成本仅8.8美元

1. 概览 该论文主要展示了大语言模型LLM代理能够自主利用现实世界的 1 day 漏洞。研究我发现, GPT-4 在提供了CVE描述的情况下,能够成功利用 87% 的漏洞。 这与其他测试模型(如 GPT-3.5 和其他开源 LLM )以及开源漏洞扫描器&…

Tomcat核心组件深度解析

Server组件 Service组件 连接器Connector组件 容器Container组件

【hackmyVM】whitedoor靶机

文章目录 信息收集1.IP地址2.端口探测nmapftp服务 3.访问主页 漏洞利用1.反弹shell2.尝试提权3.base64解密 提权1.切换用户2.john爆破3.切换Gonzalo用户4.vim提权 信息收集 1.IP地址 ┌─[✗]─[userparrot]─[~] └──╼ $fping -ag 192.168.9.0/24 2> /dev/null192.168…

【小程序】IOS wx小程序解压获取源文件

根据自己手机的系统,获取wx小程序的缓存目录 一、微信小程序文件存放路径 安卓: /data/data/com.tencent.mm/MicroMsg/{{user哈希值}}/appbrand/pkg/iOS越狱: /User/Containers/Data/Application/{{系统UUID}}/Library/WechatPrivate/{{user…

PCIe复位方式介绍

前言 PCIe总线中定义了四种复位名称:冷复位(Cold Reset)、暖复位(Warm Reset)、热复位(Hot Reset)和功能层复位(Function-Level Reset,FLR)。其中FLR是PCIe …

RocketMQ学习笔记

kafka适合于日志收集的场景(不需要太多topic;topic下面的partition多了会造成写文件的速度变慢,因为要造很多索引) RocketMQ更适合于电商场景(适用于topic特别多的情况) 快速安装RocketMQ RocketMQ的官网…