为了机器学习量化策略,我标注了两万条数据

在这里插入图片描述

题图:芝加哥大学海德公园。芝大是经济学重镇,其学者开创了著名的芝加哥经济学派,共产生了 100 位诺奖、10 位菲尔兹奖、4 位图灵奖。今天量化人追逐的 Alpha, 最早就来自于 Michael Jessen 在芝大时的博士论文。


很多人对基于机器学习的量化策略很好奇,常常问什么时候有机器学习的课。其实,对很多人(我自己就是)来说,没有能力改进机器学习的算法和框架,机器学习都是作为黑盒子来学习,难度主要是卡在训练数据上。

这篇文章,将介绍一种数据标注方法和工具。

有监督的机器学习需要标注数据。标注数据一般是一个二维矩阵,其中一列是标签(一般记为 y),其它列是特征(一般记为 X)。训练的过程就是:

$$

fit(x) = WX -> y’ \approx y

$$

训练就是通过反向传播来调整权重矩阵 W W W,使之得到的 y ′ y' y最接近于 y y y

特征矩阵并不困难。它可以是因子在某个时间点上的取值。但如何标注是一个难题。它实际上反应的是,你如何理解因子与标签之间的逻辑关系:因子究竟是能预测标的未来的价格呢,还是可以预测它未来价格的走势?

应该如何标注数据

前几年有一篇比较火的论文,使用 LSTM 来预测股价。我了解到的一些人工智能与金融结合的硕士专业,还把类似的题目布置给学生练习。


作为练习题无可厚非,但也应该讲清楚,使用 LSTM 来预测股价的荒谬之处:你无法利用充满噪声的时序金融数据,从价格直接推导出下一个价格。

坊间还流传另一个方法,既然数据与标签之间不是逻辑回归的关系,那么我们把标签离散化,使之转换成为一个分类问题。比如,按第二天的涨跌,大于 3%的,归类为大幅上涨;涨跌在 1%到 3%的,归类为小幅上涨。在-1%到 1%的,归类为方向不明。

其实这种方法背后的逻辑仍然是逻辑回归。而且,为什么上涨 2.99%是小幅上涨,上涨 3%就是大幅上涨呢?有人就提出改进方法,在每个类之间加上 gap,即 [-0.5%, 0.5%] 为方向不明,[1%,3%] 为小幅上涨,而处在 [0.5%, 1%] 之间的数据就丢掉,不进行训练。这些技巧在其它领域有时候是有效的,但在量化领域,我认为它仍然不够好。因为原理不对。

我们应该回归问题的本质。要判断每一天的涨跌,其实是有难度的。但如果要判断一段趋势是否结束,则相对来讲,特征会多一点,偶然性会低一点。用数学语言来讲,我们可以把一段 k 线中的顶点标注为 1,底部标注为-1,中间的部分都标注为 0。每一个峰都会有一个谷对应,但中间的点会显著多一些,数据分类不够平衡。在训练时,要做到数据分类平衡,把标签为 0 的部分少取一点即可。


顶底数据的标注

鉴于上面的思考,我做了一个小工具,用来标注行情数据的顶和底。

这个工具要实现的任务是:

  1. 加载一段行情数据,绘制 k 线图
  2. 自动识别这段 k 线中的的顶和底,并在图上标记出来
  3. 把这些顶和底的时间提取出来,放到峰和谷两个编辑框中,供人工纠错
  4. 数据校准后,点击“记录 > 下一组"来标注下一段数据

我们使用 zigzag 库来自动寻找 k 线中的顶和底。相比 scipy.signals 包中的 argrelextrema 和 find_peaks 等方法,zigzag 库中的 peaks_valleys_pivot 方法更适合股价数据 – 像 find_peaks 这样的方法,要求的数据质量太高了,金融数据的噪声远远超过它的期待。

peaks_valleys_pivot 会自动把首尾的部分也标记成为峰或者谷 – 这在很多时候会是错误的 – 因为行情还没走完,尾部的标记还没有固定下来。因此,我们需要手动移除这部分标记。此外,偶尔会发现峰谷标记太密的情况 – 一般是由于股价波动太厉害,但如果很快得到修复,我们也可以不标记这一部分。这也需要我们手动移除。

最终,我们将行情数据的 OHLC、成交量等数据与顶底标记一起保存起来。最终,我们将得到类似下面的数据:

当然,它只能作为我们训练数据的一个底稿。我们说过,不能直接使用价格数据作为训练数据。我们必须从中提取特征。显然,像 RSI 这样的反转类指标是比较好的特征。


另外,冲高回落、均线切线斜率变化(由正转负意味着见顶,反之意味着见底)、两次冲击高点不过、k 线 pattern 中的早晨之星、黄昏之星(如果你将它们的 k 线进行 resample, 实际上它是一个冲高回落过程,或者说长上影、长下影)等等都是有一定指示性的特征。

标注工具构建方法

!!! tip
这里我们介绍的是 jupyter 的 ipywidgets 来构建界面的方法。此外,Plotly Dash, streamlit, H2O wave 也是主要为此目标设计的工具。

为了在 notebook 中使用界面元素,我们需要先导入相关的控件:

from ipywidgets import Button, HBox, VBox, Textarea, Layout,Output, Box

from IPython.display import display

在一个单元格中,如果最后的输出是一个对象,那么 notebook 将会直接显示这个对象。如果我们要在一个单元格中显示多个对象,或者,在中间的代码中要显示一些对象,就需要用到 display 这个方法。这是我们上面代码引入 display 的原因。

这里我们引入了 HBox, VBox 和 Box 三个容器类控件,Button, TextArea 这样的功能性控件。


Layout 用来指定控件的样式,比如要指定一个峰值时刻输入框的宽度和高度:

peaks_box = Textarea(
    value='',
    placeholder='请输入峰值时间,每行一个',
    description='峰值时间',
    layout=Layout(width='40%',height='100px')
)

按钮类控件一般需要指定点击时执行的动作,我们通过 on_click 方法,将点击事件和一个事件处理方法相绑定:

save_button = Button(
    description='存盘'
)
save_button.on_click(save)

def save(c):
    # SAVE DATA TO DISK
    pass

这里要注意的是,事件响应函数(比如这里的 save),在函数签名上一定要带一个参数。否则,当按钮被点击时,事件就无法传导到这个函数中来,并且不会有任何错误提示。

HBox, VBox 用来将子控件按行、列进行排列。比如:

# K 线图的父容器
figbox = Box(layout=Layout(width="100%"))
inputs = HBox((peaks_box, valleys_box))
buttons = HBox((backward_button, keep_button, save_button, info))
display(VBox((buttons, inputs, figbox)))

Output 控件是比较特殊的一个控件。如果我们在事件响应函数中进行了打印,这些打印是无法像其它单元格中的打印那样,直接输出在单元格下方的。我们必须定义一个 Output 控制,打印的消息将会捕获,并显示在 Output 控件的显示区域中。

info = Output(layout=Layout(width="40%"))

def save(c):
    global info
    # DO THE SAVE JOB
    with info:
        print("数据已保存到磁盘!")

与此类似,plotly 绘制的 k 线图,也不能直接显示。我们要通过 go.FigureWidget 来显示 k 线图。

import plotly.graph_objects as go

figure = ... # draw the candlestick with bars
fig = go.FigureWidget(figure)
figbox.children = (fig, )

我们特别给出这段代码,是要展示更换 k 线图的方法。在初始化时,我们就必须把 figbox 与其它控件一起安排好,但如何更新 figbox 的内容呢?

答案是,让 figbox 成为一个容器,而 go.FigureWidget 成为它的一个子控件。每次要更新 k 线图时,我们生成一个新的 fig 对象,通过figbox.children = (fig, )来替换它。


最后,谈一点 troubleshooting 的方法。所有通过 on_click 方法绑定的事件函数,即使在运行中出了错,也不会有任何提示。因此,我们需要自己捕获错误,再通过 Output 控件来显示错误堆栈:

def log(msg):
    global info

    info.clear_output()
    with info:
        if isinstance(msg, Exception):
            traceback.print_exc(msg)
        else:
            print(msg)

def on_save(b):
    try:
        # DO SOMETHING MAY CAUSE CHAOS
        raise ValueError()
    except Exception as e:
        log(e)

info = Output(layout = Layout(...))
save_button = Button()
save_button.on_click(on_save)

利用这款工具,大概花了两小时,最终我得到了2万条数据,其中顶底标签约1600个。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/560944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Git - 在PyCharm/Idea中集成使用Git

文章目录 Git - 在PyCharm/Idea中集成使用Git1.新建GitHub仓库2.将仓库与项目绑定3.在PyCharm中使用Git4.新建Gitee仓库5.将仓库与项目绑定6.在IDEA中使用Git Git - 在PyCharm/Idea中集成使用Git 本文详细讲解了如何在 PyCharm 或 Idea 中配置 Gitee 或 GitHub 仓库&#xff0…

稀碎从零算法笔记Day53-LeetCode:不同路径 II

稀碎系列有点更不动(更多是自己懈怠了) 题型:矩阵、模拟 链接:63. 不同路径 II - 力扣(LeetCode) 来源:LeetCode 题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” &…

DQ-DETR: DETR WITH DYNAMIC QUERY FOR TINY OBJECTDETECTION 学习笔记

论文地址:https://arxiv.org/pdf/2404.03507.pdf 此DQ-DETR与IDEA提出的同名,该文主要集中于小目标的检测 尽管之前的类似DETR的方法在通用目标检测中取得了成功,但在小目标检测方面仍然具有挑战性,因为目标 Query 的位置信息并未…

软件开发中的“左移”是什么意思?

我曾经有过一个经理,在讨论我们的项目时提到,我们需要尽可能地将我们的工作左移。 几个月后,在一次面试中,面试官问我是否知道“左移”是什么意思。 除非有人没告诉我一个秘密的软件舞蹈,我现在就来告诉你左移是什么…

iview中基于upload源代码组件封装更为完善的上传组件

业务背景 最近接了一个用iview为基础搭建的vue项目,在开需求研讨会议的时候,我个人提了一个柑橘很合理且很常规的建议,upload上传文件支持同时上传多个并且可限制数量。当时想的是这不应该很正常吗,但是尴尬的是:只有…

YZ系列工具之YZ10:VBA_梦幻图像

我给VBA下的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套一部VBA手册,教程分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的…

一分钟成为点灯大师(超简单1行代码-STM32F407的HAL实现按键中断方式点亮LED灯)

一、开发环境 硬件:正点原子探索者 V3 STM32F407 开发板 单片机:STM32F407ZGT6 Keil版本:5.32 STM32CubeMX版本:6.9.2 STM32Cube MCU Packges版本:STM32F4 V1.27.1 使用STM32F407的HAL库实现按键中断方式读取按键…

HCF-Net:用于红外小目标检测的分层上下文融合网络

摘要 红外小目标检测是一项重要的计算机视觉任务,涉及在红外图像中识别和定位微小物体,这些物体通常仅包含几个像素。然而,由于物体尺寸极小以及红外图像中通常复杂的背景,这项任务面临困难。在本文中,我们提出了一种…

【漏洞复现】魔方网表mailupdate.jsp接口存在任意文件上传漏洞

漏洞描述 魔方网表帮助其搭建了支持信创环境的端到端的一站式数据智能填报系统,实现数据收集模板个性化定义,收集任务集中管控,结构化数据存储、分析及呈现等功能。魔方网表mailupdate.jsp接口存在任意文件上传漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当…

Tomcat源码解析——类加载机制

一、类加载器的创建 在之前的Tomcat启动源码中,简单的介绍了Tomcat的四种类加载器,再复习一遍。 类加载器 作用父加载器commonLoader(共同类加载器)加载$CATALINA_HOME/lib下的类加载器应用类加载器catalinaLoader(容器…

CAD小软件diy-读柴油机壳体装配图

读取一个柴油机壳体dxf图纸,一般这种装配体轮廓曲线都是用直线和圆弧拟合的,全部都是显示的白色实现,发现有线段间隙,拖动线段补上间隙。 这个测试放在蓝奏云上面 https://wwf.lanzout.com/ip1Xx1vvhbkh

08 SQL进阶 -- 集合运算 -- 表的连结(JOIN)

1. 连结(JOIN) 前一节我们学习了 UNION和INTERSECT 等集合运算, 这些集合运算的特征就是以行方向为单位进行操作. 通俗地说, 就是进行这些集合运算时, 会导致记录行数的增减。使用 UNION 会增加记录行数,而使用 INTERSECT 或者 EXCEPT 会减少记录行数。 但这些运算不能改变…

张大哥笔记:到底什么是轻创业?怎么才叫轻创业

大家好,我是张大哥,我在公众号反复强调,个人创业尽量去选择轻资产项目,要么不创业,要么轻创业!到底什么是轻创业?怎么才叫轻创业呢,本问为你揭晓: 刚开始创业&#xff0c…

nginx--Nginx转发真实的IP

Nginx转发真实的IP 前言给nginx.conf 设置proxy_set_headerjava 程序里获取 前言 在使用nginx的时候可能会遇到判断是不是本机在做操作,这样的话web端我们是可以通过ip和端口进行远程连接的这样的话我们就需要从后端获取到真实ip来判断是不是指定的机器了&#xff…

2023androidstudio

终于下定决心将studio升级到新版本使用了,在这总结下和之前的差别 问题一: 创建java类型的项目 在新版本studio中,创建android项目时,语言选择中没有java选项了,这让一直使用java开发的我摸索了好久,终于…

深入剖析图像平滑与噪声滤波

噪声 在数字图像处理中,噪声是指在图像中引入的不希望的随机或无意义的信号。它是由于图像采集、传输、存储或处理过程中的各种因素引起的。 噪声会导致图像质量下降,使图像失真或降低细节的清晰度。它通常表现为图像中随机分布的亮度或颜色变化&#…

不敢说懂你 - Glide硬核源码剖析

问题 Glide加载流程? Glide整体架构? Glide数据加载的来源? Glide缓存加载的流程? Glide线程切换原理? Glide如何感知Activity? Glide哪种情况会返回应用级的RequestManager? … 带着一些问题去阅读… 使用示例 本篇主要基于glide:4.12.0进行分析。下面是Gli…

LeetCode 11.盛最多谁的容器

目录 题目描述 方法一 双指针 思路: 代码: 题目描述 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的…

实验室三大常用仪器1---示波器的基本使用方法(笔记)

目录 示波器的作用 示波器的基础操作方法 示波器测量突变脉冲 示波器的作用 示波器能帮助我们干什么? 比如说某个电源用万用表测量是稳定的5V输出 但是用示波器一看确实波涛汹涌 这样的电源很可能回导致系统异常工作 又比如电脑和单片机进行串口通信时&#xf…

ubuntu在xshell中使用快捷方式操作命令,减少命令行的数入量

第一步 第二步 然后无脑确定 第三步 在xshell的显示方式 方式一 这样就会在每个窗格中进行显示 方式二 效果显示–> 这种窗格的显示是全局的 然后你双击这个process就会自动把命令打在命令行上,减少你的输入量