Youtube DNN

目录

1. 挑战

2. 系统整体结构

3.召回

4. 排序

5. 训练和测试样本的处理


1. 挑战

(1)规模。很多现有的推荐算法在小规模上效果好,但Youtobe规模很大。

(2)新颖度。Youtobe语料库是动态的,每秒都会有新视频,推荐系统需要能够模拟新上传的内容以及用户的最新行为。即探索和利用机制。

(3)噪音。Youtobe上的历史用户行为本来就很难预测,很少得到用户满意度的真实值,而是对有噪声的隐式反馈信号进行建模。

2. 系统整体结构

由召回和排序组成。召回对用户Youtobe的活动历史建模,从大型语料库中检索出一小部分视频,用户之间的相似度用粗糙的特征来表示,比如视频id,搜索查询token,人口统计数据;排序使用视频和用户的丰富特征,从召回结果里对视频进行打分。

在开发过程中使用离线指标(precision,recall,ranking loss)指导系统的迭代。但是最终确定算法或模型的有效性,要通过现场实验进行A/B测试。在线上实验时,可以衡量CTR、观看时间和许多其他衡量用户粘性的指标,实时A.B测试的结果过不总是和离线实验相关。

3.召回

(1)召回建模为分类

将召回建模为分类问题。将推荐作为极端多分类问题:基于用户U和上下文信息C,在一个数百万的语料库V中,在t时刻准确的预测视频i(类别)。

深度神经网络的任务时学习用户的embedding(用户历史和上下文的函数)。

虽然Youtobe上存在显示的反馈(点赞、踩),作者采用隐式的观看数据去训练模型,这样选择是基于隐式的用户历史的数量级大,显示反馈很稀疏的也能有推荐的视频。

采用负采样技术,有效的训练具有数百万个类的模型,并使用重要性加权来纠正抽样,对于每个示例,真实标签和采样的负类,交叉熵最小。相比于原来的sotfmax分类,速度更快。

没有负采样前,每次迭代要更新所有参数,负采样后,每次迭代只用更新部分参数。

serving时需要计算最有可能的N个视频(类)呈现给用户,在serving时不需要softmax的校准似然,因此评分问题可以简化为点积空间的最近邻搜索,召回模型得到user和item的embedding后,通过embedding最近邻搜索进行模型服务。

(2)召回结构

  • 输入层:输入的特征有用户的观看历史,用户搜索历史,用户的人口统计特征,以及example age

    用户观看历史中的每个watch都被embedd,然后将用户观看历史行为embedd平均,代表用户的观看历史向量。

    每个搜索query都被token化,每个token都被embedd,将tokens embedd平均代表了一个融合的用户历史搜索。

    用户人口统计特征里的类别特征经过embedding拼接起来

    连续特征归一化

    将所有上述特征拼接起来

  • 中间层,经过三层Relu激活函数的全连接层

  • 输出层:使用softmax作为输出层。线下时是一个多分类(video)问题,并通过负采样技巧,最小化交叉熵损失,提升训练效率,加快训练速度

    serving时使用最近邻搜索快速召回。视频embedding的生成:softamx层的参数本质上是一个m×n维的矩阵,m是指最后一层(Relu层)维度,n指的是分类总数(Youtube所有视频的总数),视频Embedding是m×n维矩阵的各列向量。

    用户embedding:当输入用户u的特征向量时,最后一层ReLU层的输出向量可以当作该用户的Embedding向量,在模型训练完成后,逐个输入所有用户的特征向量,就可以在最后一个ReLU层得到所有用户的Embedding向量。

    在预测某用户的视频候选集时,先得到改用的Embedding向量,再在视频Embedding向量空间中利用局部哈希等方法搜索到用户Embedding向量的Top K近邻,就可以得到k个候选视频集合。

使用深度学习代替矩阵分解的优势:任意的连续和类别特征可以很容易的加到模型中。

1)输入特征——输入层

  • 搜索历史和观看历史

用户观看历史中的每个watch都被embedd,然后将用户观看历史行为embedd平均,代表用户的观看历史向量。

每个搜索query都被token化,每个token都被embedd,将tokens embedd平均代表了一个融合的用户历史搜索。

  • 用户的人口统计特征

用户的人口统计特征可以提供先验信息。

用户的地理区域和设备被embedd并拼接起来,用户的性别、年龄、登录状态直接归一化到[0,1]之间输入到网络

  • example age

把样本年龄作为特征训练模型能够准确的表示数据中观察到的上传时间和随时间变化的流行度。建模出视频热度随时间的变化情况

如果没有特征,模型将在训练窗口上预测大约的平均似然。

训练时,定义为训练样本产生的时刻距离当前时刻的时间。在serving时,该特征被设置为0(或略负),反映模型在训练窗口的最后进行预测。改特征本身不包含任何信息,但当该特征在深度神经网络中与其他特征做交叉时,起到了时间戳的作用,通过这个时间戳和其它特征的交叉,保存了其它特征随时间变化的权重,让最终预测包含时间趋势信息。

2)label and context selection

  • 在解决推荐问题时,常用代理问题,将对应的结果转移到特定的场景,例如假设预测用户评分可以带来更好的推荐结果,代理问题选择对线上A/B测试重要,难以离线评估。
  • 模型训练阶段,训练样本来自Youtube整个产品,而不仅仅是所有观看行为。否则的话推荐系统很难推荐出新的内容,系统会更多地偏向于利用。
  • 给用户生成固定长度的训练样本,通过针对每个用户采用固定的长度的训练样本, 能够使得每个用户在损失函数中具有相同的权重, 这种方式防止活跃度高的用户对模型的损失影响较高。
  • 丢弃搜索token的顺序信息。需要丢弃查询结果的序列信息, 通过无序的查询token集合来表示用户的查询历史, 使得分类器没有办法直接知道标签的来源。否则主页推荐结果可能全是用户刚刚查询的结果。
  • 随机选择一个用户观看,并把观看之前的用户行为作为输入。许多协同过滤方法通过随机地保留一个项目, 然后从其他观影历史预测这个留出项来选择标签和上下文。 这种方法泄露了未来信息。

4. 排序

排序模型的结构和和召回模型很相似,但是输入和输出之间有些区别。相比于生成模型需要对几百万候选集进行粗筛,排序模型只需要对几百个候选视频进行排序,可以以内更多特征。

1)输入层特征

  • 当前候选视频Embedding
  • 用户观看过的最后N个视频Embedding的平均值
  • 用户语言的Embedding和当前后续那视频语言的Embedding
  • 该用户自上次观看同频道视频的时间

刚看过某个频道的视频,用户大概率会继续看

  • 该候选视频已经曝光给用户的次数

避免同一视频对用户的持续无效曝光,尽量增加新用户看到新视频的可能性。

除了归一化的连续特征本身,还有这些连续特征的非线性变换,例如x^2,\sqrt{x},引入特征的非线性,给网络更强的表达能力。

2)中间层

三层Relu网络

3)输出层

排序模型选择加权逻辑回归作为其输出层,模型服务阶段选择$e^{Wx+b}$函数。

从Youtube商业模式出发,增加用户观看时长才是其推荐系统最主要的优化目标,因此在训练排序模型时,每次曝光期望观看时长应该作为更合理的优化目标。为了可以直接预估观看时长,Youtube将正样本的观看时长作为其样本权重,负样本权重未单位权重,用加权逻辑回归进行训练,就可以让模型学到用户观看时长信息。

5. 训练和测试样本的处理

(1)召回模型把推荐问题转换为多分类问题。

在预测下一次观看时,整个视频物料都是候选类别。采用负采样训练方式减少了每次预测的分类数量,从而加快了整个模型的收敛速度,

(2)在对训练集的预处理过程重,没有采用原始用户日志,而是对每个用户提取等数量的训练样本。

减少高度活跃用户对模型损失的过度影响,使模型偏向活跃用户的行为模式,忽略更广大的长尾用户的体验。

(3)在处理测试集时,没有采用经典的留一法,而是以用户最近一次观看作为测试集。

避免引入未来信息,产生数据数据穿越问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/559799.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows如何安装JDK

JDK和JRE简介 JDK:Java Development ToolKit java开发工具包,包含JRE针对java程序开发者 JRE:Java Runtime Environment java程序的运行环境针对java使用者来说 下载JDK,进入官网下载 Oracle官网 双击下载好之后的exe文件&#…

关于Python中install edge_tts记录

如下代码: #!/usr/bin/env python3""" Basic audio streaming example.This example shows how to stream the audio data from the TTS engine, and how to get the WordBoundary events from the engine (which could be ignored if not needed).…

分保、等保、关保、密评之间联系与区别

分保、等保、关保、密评之间联系与区别 什么是“三保一评”分保等保关保密评 相关的法律法规依据分保等保关保密评 分保工作简介分保工作流程分级保护技术要求 等保工作简介关保工作简介密评工作简介三保一评联系与区别 什么是“三保一评” 分保 涉密信息系统分级保护 指涉密信…

vivado 存储器校准调试

存储器校准调试 Vivado 中的存储器接口 IP 支持校准调试。其中存储有实用的核配置、校准和数据窗口信息 , 可在 Vivado 硬件管理器 中访问这些信息。“存储器校准调试 (Memory Calibration Debug) ”可随时用于读取此信息 , 并从存储器接口 IP 中获…

Linux命令学习—Iptables 防火墙(上)

1.1、防火墙 1、防火墙的定义 所谓防火墙指的是一个由软件和硬件设备组合而成、在内部网和外部网之间、专用网与公共网之间的界面上 构造的保护屏障.是一种获取安全性方法的形象说法,它是一种计算机硬件和软件的结合,使 Internet 与 Intranet 之间建立起…

LeetCode216:组合总和Ⅲ

题目描述 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件: 只使用数字1到9 每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 解题思想 使用回溯算法 代码 class So…

代理IP对网络爬虫有什么影响?

代理IP对网络爬虫的影响深远且多方面,主要体现在以下几个方面: 第一点,代理IP能有效防止爬虫IP被封禁:在爬虫工作过程中,如果频繁访问同一目标网站,很容易被该网站的服务器识别为恶意行为,导致…

【大数据】Apache Knox 概述

Apache Knox 概述 1.概述1.1 Kerberos 封装1.2 简化客户端证书的管理1.3 Apache Ranger 集成1.4 Hadoop URLs VS Knox URLs 2.自定义 Apache Knox2.1 Topology2.2 Provider2.3 Services2.4 Personalized services 3.Tips3.1 Setting up SSL3.2 常见问题3.2.1 Bulky answer3.2.2…

【JavaSE】JDK17的一些特性

前言 从springboot3.0开始,已经不⽀持JDK8了 选⽤Java17,概括起来主要有下⾯⼏个主要原因 JDK17是LTS(⻓期⽀持版),可以免费商⽤到2029年。⽽且将前⾯⼏个过渡版(JDK9-JDK16) 去其糟粕,取其精华的版本JDK17…

hbase基础(二)

HBase第二天 名称空间 namespace:名称空间默认hbase有两个名称空间,default、hbasedefault名称空间是默认创建表的位置,hbase是专门存放系统表的名称空间(namespace、meta)管理命名空间指令 create_namespace 命名空…

qt tcp 连接 秒断连,求助

问题: tcp连接总是秒成功后断连 debug会出现下面这些 onecore\net\netprofiles\service\src\nsp\dll\namespaceserviceprovider.cpp(550)\nlansp_c.dll!00007FFDA2A1D93D: (caller: 00007FFDD8BEACF6) LogHr(1) tid(336c) 8007277C ¡£¡£ one…

小型企业网络优化加速方案

随着数字化经济蓬勃发展,小型企业的网络基础设施变得尤为重要。在这一浪潮中,建立一个稳定、高效的企业网络成为支撑业务发展的关键。本文将深入研究针对小型企业设计的网络优化加速方案,助力企业主了解如何规划和实施适合自身业务需求的网络…

Spring Boot 统一功能处理(三)

本篇主要介绍Spring Boot的统一异常处理。 目录 一、统一异常处理的使用 二、测试统一异常处理效果 三、浅析原理 ControllerAdvice简析 统一处理异常简析 一、统一异常处理的使用 在前面介绍统一数据返回时,我们在程序发生异常时会把整个报错信息都封装在da…

BRC20铭文铭刻解析

BRC20铭文铭刻的出现对于智能制造无疑是一个重要的里程碑。随着科技的飞速发展,智能制造已经成为制造业发展的必然趋势!智能制造是指通过运用人工智能、物联网、大数据等先进技术,实现生产过程的自动化、智能化和高效化。 1. BRC20铭文的概念…

Docker了解及命令行使用

一、了解Docker 1、什么是Docker Docker为应用程序的开发、发布和运行提供了一个基于容器的标准化平台。容器运行的是应用程序,Docker平台用来管理容器的整个生命周期 2、虚拟机与容器 2.1、虚拟机是什么 虚拟机(Virtual Machine)是一种软…

PostgreSQL 免费的对象-关系数据库

目录 一、什么是数据库 二、ORDBMS 的一些术语 三、PostgreSQL 概述 四、PostgreSQL数据库优点和缺点 4.1PostgreSQL数据库的优点 4.2PostgreSQL数据库的缺点 4.3PostgreSQL 特征 五、Linux 上安装 PostgreSQL 5.1Yum 安装 PostgreSQL 5.1.1安装postgreSQL的官方yum仓…

华火电燃灶:重拾烹饪艺术的黄金法则,打造家庭美食的温馨记忆

记得在饭店给客户人炒菜的时候,炉灶下的每一道菜都透着诱人的香气。无论是炒肉还是炖汤,那股鲜香总让人回味无穷。然而,回到家,用上自家的燃气灶,发现同样的食材、同样的配方,味道却平淡无奇,仿…

记录一个hive中因没启yarn导致的spark引擎跑insert语句的报错

【背景说明】 刚在hive中配置了Spark引擎,在进行Hive on Spark测试时报错, 报错截图如下: [atguiguhadoop102 conf]$ hive which: no hbase in (/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/module/jdk1.8.0_212/bin:/opt/mod…

一个简单的java递归下降语法分析器例子

import parser.Parser; import parser.RecursiveDescentParser;import java.util.ArrayList; import java.util.Arrays; import java.util.List;public class Main {public static void main(String[] args) {// 关键词List<String> keyList new ArrayList<>(Arra…

npm i 依赖下载失败

git config --global url."https://".insteadOf git://解决npm install 报错 npm ERR code 128 Permission denied_please make sure you have the correct access right-CSDN博客