<C++> 三、内存管理

1.C/C++内存分布

 我们先来看下面的一段代码和相关问题

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
    static int staticVar = 1;
    int localVar = 1;
    int num1[10] = {1, 2, 3, 4};
    char char2[] = "abcd";
    const char *pChar3 = "abcd";
    int *ptr1 = (int *)malloc(sizeof(int) * 4);
    int *ptr2 = (int *)calloc(4, sizeof(int));
    int *ptr3 = (int *)realloc(ptr2, sizeof(int) * 4);
    free(ptr1);
    free(ptr3);
}

char2是数组放在栈区,char2,对char2解引用,为a,也是放在栈区,而pchar3是个指针,表示abcd的地址,放在栈区,而abcd是普通字面量是在常量区,ptr1表示放在堆区的内存的地址,*prt表示在堆区开辟的内存

说明:

  1. 又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。

  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。

  3. 用于程序运行时动态内存分配,堆是可以上增长的。

  4. 数据段--存储全局数据静态数据

  5. 代码段--可执行的代码/只读常量

2.C语言中动态内存管理方式:malloc/calloc/realloc/free

int main()
{
    int *p2 = (int *)calloc(4, sizeof(int));
    int *p3 = (int *)realloc(p2, sizeof(int) * 10);

    cout << p2 << endl; // 0x1061730
    cout << p3 << endl; // 0x1061730   realloc原地扩容了,当扩容的空间更大,可能就不会原地扩容了,
    // 比如sizeof(int)*100就变成了异地扩容

    // 这里需要free(p2)吗?
    // free(p2);   //因为p3原地扩容了,所以只要free一次就够了
    free(p3);

    return 0;
}

3.C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过newdelete操作符进行动态内存管理。

3.1 new/delete操作内置类型

int main()
{
    // int *p1 = new int;  //不会初始化
    int *p1 = new int(10);             // 会初始化 ,申请一个int,初始化为10
    int *p3 = new int[10];             // 申请10个int的数组,无初始化
    int *p4 = new int[10]{1, 2, 3, 4}; // 申请10个int的数组,并且初始化

    int *p2 = (int *)malloc(sizeof(int));

    delete p1;
    delete[] p3;
    delete[] p4;
    return 0;
}

注意:申请和释放单个元素的空间,使用newdelete操作符,申请和释放连续的空间,使用 new[]delete[],注意:匹配起来使用(C++和C语言的不要混用)。

 3.2 new和delete操作自定义类型

class A
{
public:
    A(int a = 0)
        : _a(a)
    {
        cout << "A():" << this << endl;
    }

    ~A()
    {
        cout << "~A():" << this << endl;
    }

private:
    int _a;
};

struct ListNode
{
    // C语言写法 - val需要另外写一个函数给值
    int _val;
    ListNode *_next;
    // C++写法,可以在new的时候初始化,更加方便
    ListNode(int val)
        : _val(val), _next(nullptr)
    {
    }
};

int main()
{
    // int *p1 = (int *)malloc(sizeof(int));   //C语言
    // free(p1);
    int *p1 = new int; // C++
    delete p1;

    // int *p2 = (int *)malloc(sizeof(int) * 10);   //C语言
    // free(p2);
    int *p2 = new int[10];  //C++
    delete[] p2;

    // A *p3 = (A *)malloc(sizeof(A));  //C语言也可以给类创建空间,而C++可以创建空间的同时调用构造函数
    // free(p3);

    A *p3 = new A(1); // 调用构造函数
    delete p3;        // 调用析构函数

    ListNode *n1 = new ListNode(1);   //创建新的结点,用C++方式更加方便,而C语言需要另外写一个函数给val赋值
    ListNode *n2 = new ListNode(2);
    ListNode *n3 = new ListNode(3);
    return 0;
}

注意:在申请自定义类型的空间时,new会调用构造函数delete会调用析构函数,而malloc与free不会。

3.3 malloc/free和new/delete的区别

malloc/freenew/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:

  1. mallocfree函数newdelete操作符

  2. malloc申请的空间不会初始化new可以初始化

  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象[]中指定对象个数即可

  4. malloc返回值void*, 在使用时必须强转new不需要,因为new后跟的是空间的类型

  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常

  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化delete在释放空间前会调用析构函数完成空间中资源的清理

3.4 new和delete的实现原理

3.4.1 内置类型

如果申请的是内置类型的空间,newmallocdeletefree基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]delete[]申请的是连续空间,而且new在申请空间失败时会抛异常malloc会返回NULL

3.4.2自定义类型

new的原理:

1.调用operator new函数申请空间

2.在申请的空间上执行构造函数,完成对象的构造

delete的原理:

1.在空间上执行析构函数,

完成对象中资源的清理工作

2.调用operator delete函数释放对象的空间

new T[N]的原理:

1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请

2.在申请的空间上执行N次构造函数

delete[]的原理:

1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理

2.调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

4.operator new与operator delete函数

newdelete是用户进行动态内存申请和释放的操作符operator newoperator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过 operator delete全局函数来释放空间。

class A
{
public:
    A(int a = 0)
        : _a(a)
    {
        cout << "A():" << this << endl;
    }

    ~A()
    {
        cout << "~A():" << this << endl;
    }

private:
    int _a;
};

int main()
{
    // 失败返回nullptr
    int *p1 = (int *)malloc(sizeof(int));
    // 失败了抛异常
    int *p1 = (int *)operator new(sizeof(int));

    // 申请空间 operator new->封装malloc
    // 调用构造函数
    A *p2 = new A;
    // 底层机制是先调用析构函数,再释放p2指向的空间
    delete p2;

    // 申请空间 opeator new[] ->operator new->封装malloc
    // 调用10次构造函数
    A *p6 = new A[10];

    // 先调用10次析构函数
    // 再operator delete[] p6指向的空间
    delete[] p6;
    return 0;
}

void test()
{
    // 内置类型,new和delete不匹配不会报错
    int *p7 = new int[10];
    free(p7); // 正常释放,因为不是对象,不会发生在对象中开辟内存后,没调用析构函数而导致的内存泄露

    A *p8 = new A;
    free(p8); // 少调用析构函数,但是因为A对象没有开辟新的内存在堆区,不调用析构函数也不会发生内存泄漏
}
class Stack
{
public:
    Stack()
    {
        cout << "Stack()" << endl;
        _a = new int[4];
        _top = 0;
        _capacity = 4;
    }

    ~Stack()
    {
        delete[] _a;
        _top = _capacity = 0;
    }

private:
    int *_a;
    int _top;
    int _capacity;
};

int main()
{
    Stack st; // 正常创建对象,创建的对象在栈区,而对象中开辟的内存在堆区

    Stack *pst = new Stack; // 不是正常创建对象,pst在栈区,pst指向在堆区创建的Stack,在堆区的Stack对象开辟的内存还是在堆区
    delete pst;             // 1、先调用析构函数 2、在调用operator delete
    free(pst);              // 改写成这样,不会报错,但是少调用一次析构函数,如果对象中有新建的空间,那么就会发生内存泄漏
}

结论:new/malloc系列有底层实现机制有关联交叉。
不匹配使用,可能有问题,可能没问题,建议大家一定匹配使用

通过上述两个全局函数的实现知道,operator new实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete最终是通过free来释放空间的。

void test()
{
    A *p9 = new A[10];
    //free(p9);  
    //delete p9;
    delete[] p9;
}

VS编译器开空间会在头多开4个空间来包保存对象个数,如果free(p9)就不是free正确的位置,p9-4才是正确的位置。

如果对象中没有析构函数,就不会在头开辟4字节空间,就不会报错

5.定位new表达式(placement-new)

 定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用场景:  

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。  

class A
{
public:
    A(int a = 0)
        : _a(a)
    {
        cout << "A():" << this << endl;
    }

    ~A()
    {
        cout << "~A():" << this << endl;
    }

private:
    int _a;
};

int main()
{
    A aa;
    A *p1 = (A *)malloc(sizeof(A));
    // 对一块已有的空间初始化 -- 定位new
    // new(p1)A;
    new (p1) A(1);

    p1->~A();
    free(p1);
    return 0;
}

6.内存泄漏

6.1 什么是内存泄漏,内存泄漏的危害

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。

内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。 

void MemoryLeaks()
{
    // 1.内存申请了忘记释放
    int *p1 = (int *)malloc(sizeof(int));
    int *p2 = new int;

    // 2.异常安全问题
    int *p3 = new int[10];

    Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.

    delete[] p3;
}

6.2 内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

堆内存泄漏(Heap leak):

堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的free或者delete删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

系统资源泄漏

指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

6.3 如何检测内存泄漏

在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。  

int main()
{
    int *p = new int[10];
    // 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏
    _CrtDumpMemoryLeaks();
    return 0;
}

// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置
Detected memory leaks!
Dumping objects ->
{79} normal block at 0x00EC5FB8, 40 bytes long.
Data: <                > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
Object dump complete.

因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。

 6.4 如何避免内存泄漏

  1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps: 这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。

  2. 采用RAII思想或者智能指针来管理资源。

  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。

  4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

总结一下: 内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55955.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小乌龟(TortoiseGit)连接GitLab

目录 &#x1f35f;写在前面 &#x1f35f;实验目标 &#x1f35f;安装gitlab &#x1f37f;1、安装依赖 &#x1f37f;2、下载清华gitlab包 &#x1f37f;3、安装gitlab &#x1f37f;4、修改配置文件 &#x1f37f;5、管理命令 &#x1f35f;访问gitlab &#x1f35f;界面设置…

《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(16)-Fiddler如何充当第三者再识AutoResponder标签-上

1.简介 Fiddler充当第三者&#xff0c;主要是通过AutoResponder标签在客户端和服务端之间&#xff0c;Fiddler抓包&#xff0c;然后改包&#xff0c;最后发送。AutoResponder这个功能可以算的上是Fiddler最实用的功能&#xff0c;可以让我们修改服务器端返回的数据&#xff0c…

html学习3(表格table、列表list)

1、html表格由<table>标签来定义。 <thead>用来定义表格的标题部分&#xff0c;其内部用 <th > 元素定义列的标题&#xff0c;可以使其在表格中以粗体显示&#xff0c;与普通单元格区分开来。<tbody>用来定义表格的主体部分&#xff0c;其内部用<t…

力扣 63. 不同路径 II

题目来源&#xff1a;https://leetcode.cn/problems/unique-paths-ii/description/ C题解&#xff1a;动态规划五部曲。 确定dp数组&#xff08;dp table&#xff09;以及下标的含义。dp[i][j] &#xff1a;表示从(0, 0)出发&#xff0c;到(i, j) 有dp[i][j]条不同的路径。确定…

Vue 2.x 项目升级到 Vue 3详细指南【总结版】

文章目录 0.前言1.升级教程1.1. 升级 Vue CLI&#xff1a;1.2. 安装 Vue 3&#xff1a;1.3. 更新 Vue 组件&#xff1a;1.4. 迁移全局 API&#xff1a;1.5. 迁移路由和状态管理器&#xff1a;1.6. 迁移 TypeScript&#xff1a;1.7. 迁移测试代码&#xff1a; 2.迁移总结2.0. 这…

ESP32cam系列教程003:ESP32cam实现远程 HTTP_OTA 自动升级

文章目录 1.什么是 OTA2. ESP32cam HTTP_OTA 本地准备2.1 HTTP OTA 升级原理2.2 开发板本地基准程序&#xff08;程序版本&#xff1a;1_0_0&#xff09;2.3 开发板升级程序&#xff08;程序版本&#xff1a;1_0_1&#xff09;2.4 本地 HTTP_OTA 升级测试2.4.1 本地运行一个 HT…

使用Linux部署Jpress博客系统

环境要求 linux系统&#xff1a;我使用的操作系统是CentOS7 数据库&#xff1a;mysql&#xff0c;也可以使用mariadb jdk&#xff1a;与你的Linux操作系统能兼容的版本 tomcat&#xff1a;我使用的是tomcat8版本 如果没有数据库&#xff0c;请先自行下载 如果没有安装jdk…

Agile manifesto principle (敏捷宣言的原则)

Agile在管理中越来越受推崇&#xff0c;最初是由于传统的软件开发管理方式&#xff08;瀑布模型&#xff09;面对日益复杂的需求&#xff0c;无法Delivery令人满意的结果&#xff0c;经过总结探索&#xff0c;2001年&#xff0c;由行业代表在一次聚会中提出Agile敏捷mainfesto&…

RK3588开发板 (armsom-w3) 之 USB摄像头图像预览

硬件准备 RK3588开发板&#xff08;armsom-w3&#xff09;、USB摄像头&#xff08;罗技高清网络摄像机 C93&#xff09;、1000M光纤 、 串口调试工具 v4l2采集画面 v4l2-ctl是一个用于Linux系统的命令行实用程序&#xff0c;用于控制视频4 Linux 2&#xff08;V4L2&#xff0…

P1257 平面上的最接近点对

题目 思路 详见加强加强版 代码 #include<bits/stdc.h> using namespace std; #define int long long const int maxn4e510; pair<int,int> a[maxn]; int n; double d1e16; pair<int,int> vl[maxn],vr[maxn]; void read() { cin>>n;for(int i1;i<…

(一)基于Spring Reactor框架响应式异步编程|道法术器

Spring WebFlux 响应式异步编程|道法术器(一) Spring WeFlux响应式编程整合另一种方案|道法术器(二) R2DBC简介 Spring data R2DBC是更大的Spring data 系列的一部分&#xff0c;它使得实现基于R2DBC的存储库变得容易。R2DBC代表反应式关系数据库连接&#xff0c;这是一种使用…

SpringBoot统一功能处理

我们要实现以下3个目标&#xff1a; 统一用户登录权限统一数据格式返回统一异常处理 1.用户的登录权限校验 1.1Spring AOP用户统一登录验证问题 Aspect Component public class UserAspect {// 定义切点controller包下、子孙包下所有类的所有方法Pointcut("execution(…

浅析大数据时代下的视频技术发展趋势以及AI加持下视频场景应用

视频技术的发展可以追溯到19世纪初期的早期实验。到20世纪初期&#xff0c;电视技术的发明和普及促进了视频技术的进一步发展。 1&#xff09;数字化&#xff1a;数字化技术的发明和发展使得视频技术更加先进。数字电视信号具有更高的清晰度和更大的带宽&#xff0c;可以更快地…

【李宏毅机器学习·学习笔记】Deep Learning General Guidance

本节课可视为机器学习系列课程的一个前期攻略&#xff0c;这节课主要对Machine Learning 的框架进行了简单的介绍&#xff1b;并以training data上的loss大小为切入点&#xff0c;介绍了几种常见的在模型训练的过程中容易出现的情况。 课程视频&#xff1a; Youtube&#xff1…

青少年软件编程(Python六级)等级考试试卷(2022年9月)

青少年软件编程&#xff08;Python六级&#xff09;等级考试试卷&#xff08;2022年9月&#xff09; 第 1 题 单选题 以下关于Python二维数据的描述中&#xff0c;错误的是&#xff1f;&#xff08; &#xff09; A. 表格数据属于二维数据&#xff0c;由整数索引的数据构成 …

Appium+python自动化(二十八)- 高级滑动(超详解)

高级溜冰的滑动 滑动操作一般是两点之间的滑动&#xff0c;这种滑动在这里称其为低级的溜冰滑动&#xff1b;就是上一节给小伙伴们分享的。然而实际使用过程中用户可能要进行一些多点连续滑动操作。如九宫格滑动操作&#xff0c;连续拖动图片移动等场景。那么这种高级绚丽的溜…

银河麒麟V10 飞腾 Qt环境搭建

采用在线安装方式&#xff1a; 1、在线安装qt组件 sudo apt-get install qt5-* 2、在线安装qt creator sudo apt-get install qtcreator 以上简单两步安装完成后&#xff0c;新建项目已经可以编译过&#xff0c;但ClangCodeModel会报错如下图 the code model could not parse …

docker—springboot服务通信

文章目录 docker—springboot服务通信一、方式1、host 二、坑点末、参考资料 docker—springboot服务通信 一、方式 1、host 步骤&#xff1a; host文件增加域名解析&#xff1a; 127.0.0.1 rabbitmqapplication.yml&#xff1a; application.yml中&#xff0c;连接方式使用…

matlab使用教程(7)—基本画图函数

1.创建绘图 plot 函数具有不同的形式&#xff0c;具体取决于输入参数。 • 如果 y 是向量&#xff0c; plot(y) 会生成 y 元素与 y 元素索引的分段线图。 • 如果有两个向量被指定为参数&#xff0c; plot(x,y) 会生成 y 对 x 的图形。 使用冒号运算符创建从 0 至 2…

python-网络爬虫.BS4

BS4 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库&#xff0c; 它能够通过你喜欢的转换器实现惯用的文档导航、查找、修改文档的方 式。 Beautiful Soup 4 官方文档&#xff1a;https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/ 帮助手册&…