聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法

基本RRT算法更偏向于遍历所有自由空间直到获取可行路由性,这使得它不能够进行未知或动态环境条件中的机器人实时运动计划。利用滚动计划的思路可以将RRT算法加以完善,使之更具有实时规划能力。

 滚动规划

机器人在不确定的或动态周围环境中行走时,可以探知在其传感器区域内或限定区域的周围环境讯息。机器人可以使用局部信息制定局部运动规划,并使用适当的评估标准达到部分总体目标。然后机器人可以在到达部分总体目标以后,继续制定新的部分计划。就这样,不断实施直至抵达新全局目标。

滚动规划算法的基本原理:

环保信息系统预测:在滚动的每一次,机器人通过检测到的视野内的环保信息系统、或任何存在的环保信息系统,建立保护模式,包含设定在已知范围内的环保节点类型信息系统等;

局部的优化:把这些环境信息模式视为下一次优化的窗口,并在此基础上,按照子目标点的实际情况和特定的优化对策,设计出下一次的最佳子总体目标,接着再依据子总体目标的环境信息模式,选用局部规划算法,先设定向子总体目标前进的部分路线,再执行当前对策,即依所制定的部分路线前进若干步骤,窗口也随之往前滑动;

反馈信息修正:通过局部最优路线,驱动机器人走过一个路线时,机器人将检测到新的未知信号,此时可通过其在行进中检测到的信息数据调整或修正原有的环境模式,进行滚动和下步的局部设计。

这里,部分子目标是在滚动窗口中对某个全局目标的进行条件反射,它需要远离障碍物,并符合一些优化目标。子目标的选定方式,体现了对全局优势的追求和对局部整体受限信息条件的折衷,是在给定的社会环境条件下企图进行整体性考虑的天然选项。

通过滚动窗口的路径规划算法把实时检测到的局部环境信号,以滚动方法实现网络设计。在滑动的每一次,将针对已检测到的环境保护局部信息,采用启发式策略生成环境优化子目标,在当前的视窗中完成环境保护局部路径计划,进而执行当前决策(依局部规划路径推移一次),随着滚动窗口推移,将持续地获取最新的环境信息,以便于在滚动中进行环境优化和反馈信息的整合。同时由于环境规划问题压缩在滚动窗口中,其与环境保护全局计划比较的运算工作量将大为减轻。

采用滚动窗口的路径规划方式的具体步骤为:

第一步为0:先对起始、终端、环境、机器人的视线半径、步长等完成初始化;

步骤1:若终点抵达,则规划中止;

操作2:对当前滚动窗内的所有环境消息予以刷新;

步骤3:产生局部子目标;

过程4:基于子目标和现存条件信息,在当前滚动窗口内计划一个经过调整的局部有效路线;

方法5:按规划的局部路径走进每一步,步长必须等于视野半径;

步骤6:返回步骤1。

滚动在线RRT算法流程

在一个滚动窗口内,随机树以当前区域为开始节点,并建立传感器区域内的所有随机树。结构方式与最基本RRT算法相同。但能够使在全局条件中随机树产生朝目标方向发展的态势,在运动规划时导入启发信号,以降低随机树的随机性,并增加搜索效果[7]。

以Road(x1,x2)指代随意树中二个位置节点间的道路价格,Dis(x1,x2)指代随意树中二个位置节点间的欧几里德距离。相似于Astar方法,本方法为随意树中各个节点设定一种估值参数:f(x)=g(x)+h(x)。当中g(x)=Road(x,xrand)为随意节点,而xrand则代表到树中目的结点x所需的道路时间。H(x)是启发的估值参数,在此处可取随意节点xrand到目标节点xgoal的距离作为估计值,h(x)=Dis(xrand,xgoal)。所以,f(x)就代表了从目的节点x经随机结点xrand至目的地节点xgoal的路线估量值。遍历滚动窗内随机树T时,若取估量函数中较小值的结点xnear,则f(xnear)=min(f(x))。它允许随机树按照距离为目标节点估计值f(x)很小的地方开始延伸,如图所示。


综上,在滚动窗内随机树建立的具体实施方法包括:

1.对滚动窗口随机树T初始化后,T起始时只包括了起始地址S;

2.滚动窗口自由空间中,随机选取了一种状态的xrand;

3.基于最短路线的思想寻找在树T中,与xrand距离最近的结点xnear;

4.选择输入u,将机器人状态由xnear到xnew;

5.确定了xnew是否满足回归分析,不满足则返回第四步骤;

6.将xnew看作随机树T的一个新结点时,u将被写在连接结点xnear的xnew的边上。

滑动窗口的目标空间在进行了K的抽样以后,将遍历随机树,就能够按照启发的估计思路找出当前滑窗口目标空间xsub,xsub是指在当前滑窗口中的每个子树中,所估计最小的节点。选定子目标后,在机器人前完成到达子目标点,并开始下一次的滚动RRT规划工作。过程就这样重复下去,直到抵达了子目标点G。

点击聊聊路径规划算法(四)——滚动在线RRT算法和BUG算法 - 古月居可查看全文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/558268.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++-结构体-指针-地址-指针的指针-地址的地址

经验证&#xff0c;仿真结果与预期一致。 #include <QDebug> struct test_years {int year;};//定义结构体 int main() {//定义三个结构体&#xff0c;s01,s02,s03test_years s01,s02,s03;s01.year 1000;//给s01结构体中year赋值s02.year 2000;//给s02结构体中year赋值…

yml文件解析

.yml 后缀的文件可以有多个application.yml # 项目相关配置 用于 RuoYiConfig.java ruoyi:# 名称name: RuoYi# 版本version: 3.8.5# 版权年份copyrightYear: 2023# 实例演示开关demoEnabled: true# 文件路径 示例&#xff08; Windows配置D:/ruoyi/uploadPath&#xff0c;Lin…

算法复杂度分析笔记

基本定义间的关系 算法介绍 算法分析 时间复杂度 用数量级刻画&#xff1a;忽略所有低次幂项和系数 eg1: eg2: eg3: eg4: 小结 空间复杂度 eg: 总结

【目标检测】基于深度学习的SAR图像船舶目标检测(yolov5算法,附代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内) 路虽远,行则将至;事虽难,做…

【python】计算水仙花数

【python】计算水仙花数 "水仙花数"是指一个3位数&#xff0c;它的三个位上的数字的3次幂之和等于它本身。例如&#xff0c;"153"就是一个水仙花数&#xff0c;因为1^3 5^3 3^3 153。以下是一个Python代码示例&#xff0c;用于计算并打印出所有的三位数…

程序员副业指导

程序员如何搞副业&#xff1f; 程序员不仅拥有将抽象概念转化为实际应用的能力&#xff0c;还通常具备强大的逻辑思维和问题解决能力。然而&#xff0c;许多程序员并不满足于仅仅在一家公司工作&#xff0c;他们渴望通过副业来实现个人价值的最大化&#xff0c;增加收入&#…

MySQL数据库-优化慢查询

1、什么是慢查询&#xff1f; 慢查询就是SQL执行时间过长&#xff0c;严重影响用户体验的SQL查询语句。当它频繁出现时数据库的性能和稳定性都会受到威胁 慢查询是数据库性能瓶颈的常见原因&#xff0c;是指SQL执行时间超过阈值&#xff1b;可能由于复杂的连接、缺少索引、不恰…

噪声系数测试之增益法

提到增益法测试噪声系数,大家并不陌生,这是一种简洁的测试方法,精度不如Y因子法,但是在某些测试场合,比如只有频谱仪而没有噪声头时,且待测件具有非常高的增益时,就可以使用增益法测试噪声系数。 增益法测试噪声系数的连接示意图如图1所示,其思路为:DUT输入端端接50 …

响应式修改 页面字体字号【大 中 小 】

浅浅记录下&#xff0c;工作中遇到的问题&#xff0c;修改页面文本字号。 <p class"change_fontSize">[ 字号 <a href"javascript:doZoom(18)">大</a><a href"javascript:doZoom(16)">中</a><a href"ja…

中标麒麟系统VSCode 终端字体间距变大的解决办法

设置 一、打开设置-用户-功能-终端 二、搜索 Integrated: Font Family, 如下图 至于字体的设置&#xff0c;不同系统设置并不一样 在CentOS7内核的中标麒麟系统&#xff0c;需要设置字体为“Courier New”&#xff0c;显示比较正常 参考链接 Vscode——终端字体突然间距变大…

flutter书架形式格口的动态创建(行、列数,是否全选的配置)

根据传入的行列数创建不同格口数量的书架 左图&#xff1a;5行3列、右图&#xff1a;3行3列 代码 import package:jade/bean/experienceStation/ExpCellSpecsBean.dart; import package:jade/configs/PathConfig.dart; import package:jade/utils/DialogUtils.dart; import p…

深入挖掘C语言 ----动态内存分配

开篇备忘录: "自给自足的光, 永远都不会暗" 目录 1. malloc和free1.1 malloc1.2 free 2. calloc和realloc2.1 calloc2.2 realloc 3. 总结C/C中程序内存区域划分 正文开始 1. malloc和free 1.1 malloc C语言提供了一个动态开辟内存的函数; void* malloc (size_t s…

【Flutter】自动生成图片资源索引插件一:FlutterAssetRefGenerator

介绍 FlutterAssetRefGenerator 插件&#xff1a;windows上 点击生成图片索引按钮后&#xff0c;pubspec.yaml 会出现中文乱码&#xff0c;需要手动改乱码&#xff1b;mac上没问题。 优点&#xff1a;点击图标自动生成。 目录 介绍一、安装二、使用 一、安装 安装FlutterAsset…

VirtualBox Manjaro Linux(kde)虚拟机扩容 增大硬盘存储空间

https://blog.csdn.net/m0_65274357/article/details/131965463 df -h发现/可用空间之后几百M了 文件系统 大小 已用 可用 已用% 挂载点 dev 2.0G 0 2.0G 0% /dev run 2.0G 1.2M 2.0G 1% /run /dev/sda1 40G 37…

车载终端叉车_车载人脸识别ADAS行为识别解决方案

智能车载终端的广泛应用为叉车行业注入了新的活力&#xff0c;提升了驾驶安全和效能。通过采用多种验证技术&#xff0c;如指纹、人脸、扫码和刷卡等&#xff0c;智能车载终端实现了对司机操作权限的验证&#xff0c;在叉车启动时能够自动检测安全带的状态。如果驾驶员未系安全…

OSPF综合大实验

1、R4为ISP&#xff0c;其上只配置IP地址&#xff1b;R4与其他所直连设备间均使用公有IP&#xff1b; 2、R3-R5、R6、R7为MGRE环境&#xff0c;R3为中心站点&#xff1b; 3、整个OSPF环境IP基于172.16.0.0/16划分&#xff1b;除了R12有两个环回&#xff0c;其他路由器均有一个环…

短信登录session-redis

1.流程 1.1 发送验证码 模拟路径 http://127.0.0.1:8080/api/user/code?phone1335566 Request Method:POSTcontroller层 /*** 发送手机验证码*/PostMapping("code")public Result sendCode(RequestParam("phone") String phone, HttpSession session) {…

电机控制专题(二)——Sensorless之扩展反电动势EEMF

文章目录 电机控制专题(二)——Sensorless之扩展反电动势EEMF前言理论推导仿真验证总结参考文献 电机控制专题(二)——Sensorless之扩展反电动势EEMF 前言 总结下电机控制中的扩展反电动势模型。 纯小白&#xff0c;如有不当&#xff0c;轻喷&#xff0c;还请指出。 在得出E…

SD-WAN解决电商企业海外业务网络难题

全球化背景下&#xff0c;众多国内企业都涉及到海外贸易业务&#xff0c;尤其是出海电商得到蓬勃发展。企业做出海电商&#xff0c;需要访问国外网页、社交平台&#xff0c;如亚马逊、TikTok、Facebook、YouTube等与客户沟通互动&#xff0c;SD-WAN的发展正好为解决国际网络访问…

Vue2 移动端(H5)项目封装弹窗组件

前言 因vant-ui的dialog组件没有自定义footer插槽 效果 参数配置 1、代码示例&#xff1a; <t-dialog :visible.sync"show" :title"title" submit"submit"></t-dialog>2、配置参数&#xff08;t-dialog Attributes&#xff09; 参…